

 Republic of Iraq

Ministry of Higher Education and Scientific Research

 Tikrit University

College of Computer Science and Mathematics

Department of Computer Science

Develop Hybrid Concurrency Cotrol Model for

Transaction Processing in Distributed Database System

 A Thesis Submitted to

The Council of the College of Computer Science and Mathematics,

 Tikrit University,

In Partial Fulfillment of the Requirements for obtaining the Degree of

Master in Computer Sciences

By

Muthanna Abdullah Saleh

 Supervised by

Asst. Prof. Dr. Saadi Hamad Thalij

 2024 A.D. 1446 A.H.

حِيمِ نِ الره حْم َٰ ِ الره بِسْمِ اللَّه

ا
َ
ن
َ
مْت

َّ
ل
َ
 مَا ع

ا
ا إِلَ

َ
ن
َ
مَ ل

ْ
 عِل

َ
 لَ

َ
ك

َ
ان
َ
وا سُبْح

ُ
ال
َ
 ﴿ ق

َ
نت

َ
 أ
َ
ك

ا
إِن

كِيمُ﴾
َ
ح
ْ
عَلِيمُ ال

ْ
 ال

(32)الآيت : سورة البقرة

 الظييماللَّه صدق

Acknowledgements

First and formost, all praise be to Allah Almghty for granting me the will

to complete this thesis. Special thanks and appreciation are due to my

supervisor

Asst. Prof. Dr. Saadi Hamad Thalij Who supporting and encouraged me

in every

step and stage of the thesis to complete it.

Finally, I would like to thank my Parents, my wife, brothers, sisters, my

daughters, and everyone who assisted me and

prayed for me to complete this thesis.

SUPERVISOR’S CERTIFICATION

I certify that the thesis entitled " Develop Hybrid Concurrency Cotrol

Model for Transaction Processing in Distributed Database System"

was prepared under my supervision at the Department of Computer

Science / College of Computer Science and Mathematics /University of

Tikrit is a Fulfillment of the requirement for the degree of Master in

Computer Science.

Signature:

Asst. Prof. Dr. Saadi Hamad Thalij

Date: / /2024

REPORT OF DIRECTOR OF POSTGRADUATE STUDIES

COMMITTEE

According to the recommendations presented by the supervisors and the

linguistic

evaluator of this thesis, I nominate this thesis to be forwarded for

discussion.

Signature:

Dr. khalid Khalis ibrahim

Date: / /2024

REPORT OF THE HEAD OF THE DEPARTMENT OF

COMPUTER

SCIENCE

According to the recommendations presented by the supervisors and the

linguistic

evaluator of this thesis and the director of the postgraduate studies

committee,

I nominate this thesis to be forwarded for discussion.

Signature:

Asst. Prof. Dr. Mohamed Aktham Ahmed

Date: / /2024

EXAMINATION COMMITTEE CERTIFICATION

We certify that we have read the thesis entitled " Develop Hybrid

Concurrency Cotrol Model for Transaction Processing in Distributed

Database System '' and the examining committee examined the student "

Muthanna Abdullah Saleh" in its contents and what is related

with it in / /2024 and that in our opinion it is adequate with

() standing as a thesis for the degree of Master of Science in

Computer Sciences.

Signature:

Assistant Professor. Dr. Mshari Ayed

AL- Askar

Date: / /2024

Chairman

 Signature:

Assistant Professor. Dr. Muhaned

Thiab Mahdee

Date: / /2024

Member

Signature:

Assistant Professor. Marwa Adeeb

Mohammed

Date: / /2024

Member

 Signature:

Assistant Professor.Dr. Saadi Hamad

Thalij

Date: / /2024

Member and supervisor

Final Approval by the Dean of the College of Computer Science and

Mathematics

Asst. Prof. Dr. Mahmood Maher Salih

Date: / / 2024

I

ABSTRACT

Problem Statement: In the interconnected world of distributed systems,

Distributed Database Management Systems (DDBMS) have become critical for

managing data spread across multiple locations. DDBMS face challenges in

concurrency control, where managing operations from concurrently executing

transactions is crucial. Optimistic concurrency control models can suffer from

performance issues due to varying conflict rates among transactions. A dynamic

approach is needed to adaptively select the best concurrency control strategy based

on real-time transaction conditions. Objective: The objective of this study is to

develop a develop model that dynamically selects between optimistic and

pessimistic concurrency control approaches in DDBMS. This study aims to

develop an algorithm that dynamically switches between optimistic and pessimistic

concurrency control in DDBMS, optimizing performance and consistency by

adapting to varying conflict rates. Methodology: The proposed algorithm

leverages a Back Propagation Neural Network (BPNN) to determine whether to

grant a lock or identify the winning transaction in a distributed database

environment. The BPNN's parameters are optimized using the Bear Smell Search

Algorithm (BSSA), which is designed to fine-tune the network for better decision-

making. Recognizing that in practical settings, information about the writeset (WS)

and readset (RS) is often only partially available before transaction execution, the

algorithm is tailored to accommodate scenarios with optional or incomplete WS

and RS data. This dynamic selection mechanism, supported by the BPNN-BSSA

combination, allows the system to adaptively choose the best concurrency control

strategy based on the current conflict rate. Results: The implementation of the

BSSA-BPNN algorithm demonstrated significant improvements in both transaction

throughput and consistency compared to traditional static concurrency control

methods. By dynamically adjusting to the conflict rate in real-time, the algorithm

was able to reduce transaction conflicts and improve overall system performance,

particularly in high-conflict scenarios. Conclusion: The proposed BSSA-BPNN

algorithm provides an effective solution for dynamic concurrency control in

DDBMS, balancing performance and consistency by adapting to varying conflict

rates. The integration of machine learning and optimization techniques into the

concurrency control process enhances the system's ability to handle diverse

transaction conditions, making it a robust option for modern distributed database

II

environments. Limitations and Future Work: While the BSSA-BPNN algorithm

shows promise, it is not without limitations. The effectiveness of the algorithm is

contingent on the accuracy of the conflict rate prediction, which can be influenced

by unpredictable changes in transaction patterns. Additionally, the computational

overhead introduced by the BPNN and BSSA may affect performance in systems

with extremely high transaction volumes. Future work should focus on refining the

conflict rate prediction mechanism, exploring alternative optimization algorithms,

and testing the algorithm in more diverse and larger-scale distributed environments

to further enhance its scalability and efficiency.

III

TABLE OF CONTENTS

CHAPTE

R NO.

CHAPTERS PAGE

NO.

1 INTRODUCTION 1

 1.1. SCOPE AND MOTIVATION OF THE RESEARCH 1

 1.2. PROBLEM DEFINITION 2

 1.3. RESEARCH OBJECTIVES 3

 1.4. CONTRIBUTION 4

 1.5. THESIS ORGANIZATION 5

 1.6. CHAPTER SUMMARY 6

2 DISTRIBUTED DATABASE MANAGEMENT SYSTEMS AND

DESIGN OF CONCURRENCY CONTROL IN DDBMS

7

 2.1. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

2.1.1. Characteristics of Distributed Databases

2.1.2. DDBMS Architecture

2.1.2.1 Two-Tier Client/Server Architecture

2.1.2.2 Three-Tier Client/Server Architecture

2.1.2.3Multi-Tier Client/Server Architecture

2.1.3. Types of DDBMS

2.1.4. Distributed Transaction Processing (DTP)

8

9

10

11

12

13

14

16

IV

2.1.5. ACID (Atomicity, Consistency, Isolation, Durability) Properties

of Transactions

2.1.6. Transaction Management applications

2.1.7. Concurrency Control Problem

2.1.8. Concurrency Control Strategies

1. Optimistic Concurrency Control

2. Pessimistic Concurrency Control

3. Hybrid Concurrency Control

 2.2. LITERATURE REVIEW

2.2.1. Distributed Transaction Processing

2.2.2. Concurrency Control Methods

2.2.3. Hybrid Concurrency Control Methods

2.2.4. Inferences from Literature Methods

2.2.5. Research gaps

 2.3. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS 46

 2.4. STRUCTURE OF DISTRIBUTED TRANSACTIONS 48

 2.5. MODELING OF DDBMS 49

 2.6. CONCURRENCY CONTROL PROTOCOL FOR THE DDBMS

MODEL

51

 2.7. CHAPTER SUMMARY 58

3 HYBRID CONCURRENCY CONTROL TECHNIQUE FOR

TRANSACTION PROCESSING IN DISTRIBUTED DATABASE

SYSTEM

59

 3.1. INTRODACTIN

59

17

18

18

19

23

24

30

41

45

46

V

 3.2. HYBRID CONCURRENCY CONTROL MODEL FOR

TRANSACTION PROCESSING

59

 3.3. BACK PROPAGATION NEURAL NETWORK (BPNN) 61

 3.4. BEAR SMELL SEARCH ALGORITHM (BSSA) 64

 3.5. BPNN-BAAS-BASED HYBRID CONCURRENCY CONTROL

MODEL

70

 3.6. IMPLEMENTATION 75

 3.7. CHAPTER SUMMARY 78

4 RESULTS AND DISCUSSION 79

 4.1. EXPERIMENTAL SETUP AND EVALUATION METRICS 79

 4.2. PERFORMANCE RESULTS 80

 4.3. DISCUSSION OF RESULTS 86

 4.4. CHAPTER SUMMARY 87

5 CONCLUSION AND FUTURE WORK 88

 5.1. CONCLUSION 88

 5.2. FUTURE WORK 88

 REFERENCES

VI

LIST OF TABLES

Table.

No

Title Page.

No

2.1 BENEFITS AND LIMITATIONS OF HYBRID CONCURRENCY CONTROL

MODEL FOR TRANSACTION PROCESSING
23

4.2 Performance metrics for a system under various numbers of transactions. 80

4.3 Comparative analysis of performance metrics with existing methods 81

VII

LIST OF FIGURES

Figure.

No

Title Page. No

2.1 Client/server architecture 11

2.2 Two-Tier Client/Server Architecture 12

2.3 Three-Tier Client/Server Architecture 13

2.4 Types of DDBMS 15

2.5 Modeling of DDBMS 51

2.6 Concurrency control protocol 52

2.7 Basic 2PL locking protocol 53

2.8 Strict two-phase locking protocol 54

3.1 Block diagram for hybrid concurrency control 60

3.2 Architecture of the proposed model 62

3.3 Graphical view of the olfactory system 69

3.4 Block diagram for the proposed BPNN-BSSA model 70

3.5 Flowchart of the hybrid concurrency control model 73

3.6 ATM interface 76

3.7 Customer Interface 77

3.8 Employee interface 77

4.1 Comparison of MSE between BPNN-BSSA with other approaches 82

VIII

4.2 Comparison of Throughput between BPNN-BSSA with other

approaches

83

4.3 Comparison of Conflict Ratio between BPNN-BSSA with other

approaches

84

4.4 Comparison of Failure Ratio between BPNN-BSSA with other

approaches

85

IX

LIST OF ABBREVIATIONS

DDB Distributed Database

DDBMS Distributed Database Management System

DBMS Database Management System

2PC Two-Phase Commit

3PC Three-Phase Commit

RDBMS Relational Database Management Systems

DTP Distributed Transaction Processing

ACID Atomicity Consistency Isolation Durability

ERP Enterprise Resource Planning

DistDGCC Distributed Dependency Graph Concurrency Control

YCSB Yahoo! Cloud Serving Benchmark

TPC-C Transaction Processing Performance Council Benchmark C

ARIES Aryabhatta Research Institute of Observational Sciences

OCC Optimistic Concurrency Control

EC2 Amazon Elastic Compute Cloud

S3 Simple Storage Service

DOCC Deterministic and Optimistic Concurrency Control

R-TBC/RTA Rose Tree Based Consistency/Rose Tree Algorithm

GPA-BHC Bayesian hierarchical clustering and Graph Partitioning Algorithm

PEM Performance, Efficiency, and Manageability

BFD Byzantine fault detection

FLAC Failure-Aware Atomic Commit

RLSM Robustness-Level State Machine

X

HGP Hybrid Graph Partitioning

OLB Optimized Load Balancing

RDMA Remote Direct Memory Access

OFFEXEC Optimal Execution Time

OFFCOMM Competitive Communication

OLTP Online Transaction Processing

SPTM Service Proxy Transaction Management

MVCC Multi-Version Concurrency Control

MSA Microservice Architectures

HF Health Factor

ART2 Adaptive Resonance Theory 2

RS Readset

WS Writeset

TE Transaction Effectiveness

HBOCC Hash-Based Incremental Optimistic Concurrency Control

JAG_TDB_CC Temporal Database Concurrency Control

SCN System Change Number

MOCC Mostly-Optimistic Concurrency Control

MQL Multi Queuing Lock

CDMS ClusteriX Data Management System

RDD Resilient Distributed Dataset

RCN Record Change Number

MDS Mobile Database Systems

CHs Cluster Heads

XI

CCM Concurrency Control Mechanism

OODB Object-Oriented Databases

ASOCC Adaptive and Speculative Optimistic Concurrency Control

2PL Two-Phase Locking

DCM Dynamic Concurrency Management

AOCC Adaptive Optimistic Concurrency Control

DFCL Deadlock-Free Cell Lock

P-WAL Parallel Write-Ahead Logging

SAOL Secondary Asynchronous Optimistic Lock

LRCD Least Recent Conflict Dependence

TDG Transaction Dependency Graph

SCT Scatter-Concurrency Throughput

AdaTAM Adaptive Variant Thread Activity Management

TAM Thread Activity Management

ES2PL Secure 2PL Real-Time Concurrency Control Algorithm

MCSI Multi-Clock Snapshot Isolation

NVM Non-Volatile Memory

DPC2-CD Distributed Processing and Concurrency Control in Cloud Databases

LUN Logical Unit Numbers

RDM Raw Device Mapping

NPIV N_port ID virtualization

DBaaS Database-as-a-Service

TS-DLP Time-Stamp-Based Distributed Locking Protocol

RDMA Remote Direct Memory Access

XII

T/O Timeout-based Concurrency Control

CLMD Concurrent Lock Manager For Deterministic Concurrency Control

Protocols

MGSA Modified Gravitational Search Algorithm

OLAP Online Analytical Processing

FairTID Fair Thread ID

TEE Trusted Execution Environment

BPNN Back Propagation Neural Network

BSSA Bear Smell Search Algorithm

MP Master Process

COP Cohort Processes

UP Update Processes

I/O Input/output

C2PL Conservative two-phase locking protocol

S2PL Strict two-phase locking protocol

R2PL Rigorous two-phase locking protocol

T Transaction

Q Data Item

TS Timestamp

POC Probability Odor Components

POF Probability Odor Fitness

OF Odor Fitness

EOF Expected Odor Fitness

DOC Distance Odor Components

TP Throughput

XIII

CR Conflict rate

ET Execution time

MSE Mean Squared Error

XIV

LIST OF SYMBOLS

 Signal Transition

 𝑛 Hidden Layer

𝑤𝑚 𝑛 Weight Connection

 𝑛 Threshold Value

𝑣𝑙 Output of the neuron

 Expected Output

(𝑙 𝑦𝑙)𝑦𝑙 (𝑦𝑙) Error correction in the output layer

 𝑖 ,𝑜 𝑖
 𝑜 𝑖

 𝑜 𝑖
𝑗
 𝑜 𝑖

𝑘 - odor received with molecules/components

 , 𝑖-𝑛 𝑘 [𝑜 𝑖
𝑗
]
𝑛 𝑘

 Odor matrix

 𝑖
𝑗
 Breathing function and glomerular layer process

 𝑖(𝑖) Olfactory epithelium

 * 𝑠 𝑠 𝑠𝑛+ External Inputs to the Mitral cells

 * 𝑠 𝑠 𝑠 𝑛+ Central Input to Granule cells

 𝑥() * 𝑥(𝑥) 𝑥(𝑥) 𝑥(𝑥𝑛)+ Outputs of the Mitral cells

 𝑎𝑛 Relationship between the Granular and Mitral Cells

 𝑙 𝑕 𝑎𝑛 𝑤 Connection Constants

 Probability Odor Components

 Probability Odor Fitness

 Odor Fitness

 Expected Odor Fitness

XV

 Distance Odor Components

 and Odors thresholds

 𝑡 𝑟𝑚 𝑥 Maximum Iterations

 conflict rate parameter

 number of conflicts

 𝑎𝑛 random weight vectors

1

CHAPTER ONE

INTRODUCTION

It is vital to store data across multiple nodes or locations. The focus was on

managing concurrent transactions efficiently and ensuring consistency and

isolation properties across the distributed environment. There are different methods

based on locking and timestamps, according to which the performance of the

proposed model is evaluated in terms of throughput, access time, and scalability.

Distributed database systems present challenges that do not exist in centralized

systems. Multiple interconnected databases are deployed across different

geographical locations to enable efficient data access and management. There are

significant challenges due to network latency, data duplication, and node failure. In

this research, It developed a hybrid concurrency control model designed to process

transactions in distributed database systems. This model must adapt to the dynamic

nature of distributed systems, including changing network conditions, node

failures, and data evaluation.

1.1. SCOPE AND MOTIVATION OF THE RESEARCH

Investigating concurrency control models specifically tailored for distributed

database systems, where data is stored across multiple nodes or sites. Focusing on

managing concurrent transactions efficiently and ensuring consistency and

isolation properties across the distributed environment is vital. It is also important

for exploring a combination of concurrency control mechanisms to leverage the

strengths of different approaches, such as locking-based and timestamp-based

methods. Assessing the performance of the proposed technique in terms of

throughput, latency, and scalability, considering the challenges posed by distributed

environments. Addressing various consistency models, such as strict consistency,

eventual consistency, and causal consistency, and their implications on

concurrency control in distributed settings. Investigating mechanisms to ensure

transactional consistency and recoverability in the presence of node failures,

network partitions, and other distributed system failures.

Distributed database systems introduce challenges not present in centralized

systems, such as network latency, communication overhead, and data partitioning.

These challenges motivate the need for tailored concurrency control techniques.

2

Ensuring that transactions execute concurrently while maintaining data consistency

and isolation is crucial for the correctness and performance of distributed systems.

Traditional concurrency control techniques may face scalability limitations in

distributed environments with a large number of nodes and high transaction

volumes. Hybrid techniques offer the potential to improve scalability while

maintaining correctness. The motivation to research hybrid concurrency control

techniques lies in the desire to optimize the performance of distributed database

systems by leveraging the strengths of different concurrency control mechanisms

based on the characteristics of the workload and system configuration. Distributed

database systems are pervasive in modern applications such as cloud computing,

social networks, and e-commerce platforms. Enhancing the concurrency control

techniques in these systems can lead to improved reliability, performance, and user

experience. Therefore, the research aims to address the challenges inherent in

managing concurrency in distributed database systems by proposing and evaluating

a hybrid concurrency control technique. This technique is motivated by the need to

ensure consistency, scalability, and performance in real-world distributed

applications.

1.2. PROBLEM DEFINITION

In a distributed database system, multiple interconnected databases are spread

across different geographical locations, enabling efficient data access and

management. However, ensuring consistency and concurrency control in such a

distributed environment poses significant challenges due to factors like network

latency, data replication, and node failures. Concurrency control techniques play a

crucial role in maintaining data integrity and transaction correctness in distributed

databases. The research problem revolves around developing a hybrid concurrency

control technique tailored for transaction processing in distributed database

systems. Designing a concurrency control mechanism that ensures transactions can

execute concurrently while preserving data consistency across distributed nodes.

This involves exploring various concurrency control models, such as locking,

timestamp ordering, and optimistic concurrency control, and identifying their

limitations in a distributed setting. This model must adapt to the dynamic nature of

distributed systems, including varying network conditions, node failures, and data

partitioning. The proposed technique should be robust enough to handle these

challenges without sacrificing performance or data consistency. It must investigate

3

optimization strategies to enhance the performance and scalability of the

concurrency control technique. This includes exploring techniques to minimize the

overhead of coordination among distributed nodes, reduce contention for shared

resources, and improve transaction throughput under heavy workloads. These

mechanisms must ensure fault tolerance and recovery in case of node failures or

network partitions. This involves designing strategies for transaction recovery, data

replication, and distributed commit protocols to maintain data consistency and

recover from failures seamlessly. This hybrid concurrency control technique must

address the unique challenges posed by distributed database systems, offering

improved performance, scalability, and fault tolerance while ensuring data

consistency and transaction correctness.

1.3. RESEARCH OBJECTIVES

The research advances the system in a distributed environment by integrating

Hybrid concurrency control techniques and natural-based search algorithms to

effectively enhance efficiency.

 To develop a resilient model to face the failures related to requests, sites,

queries, and communication.

 To develop a model that permits parallel execution of transactions and

achieves maximum concurrency.

 The computational methods and storage mechanisms should be modest to

minimize overhead.

 To develop hybrid concurrency control approach combines optimistic and

pessimistic approaches and then dynamically selects the concurrency control

technique for the corresponding transaction sets using the conflict rate.

4

1.4. CONTRIBUTION

A hybrid concurrency control method for transaction processing in distributed

database systems is introduced, utilizing artificial neural networks and a bio-

inspired optimization algorithm. This hybrid method integrates the Back

Propagation Neural Network (BPNN) and Bear Smell Search Algorithm (BSSA). The

BPNN method is utilized to handle the lock-grand decisions and to resolve the

conflicts by determining the successful transactions. The parameters of the BPNN

are fine-tuned by using the natural inspired algorithm BSSA. Regarding the

transaction conflicts, resource contention, and system performance metrics the

BPNN is trained on the historical data to enable the model to learn the patterns

and relationships between various input parameters and for desired concurrency

control decisions. In concurrency control, the BPNN is used to handle the complex

and non-linear relationships between input parameters and desired outputs.

However, the performance of BPNN is highly dependent on the quality of training

and optimizing the internal parameters such as weight and bias. To optimize the

parameters the BSSA is utilized for making the concurrency control decisions. The

proposed technique aims to find the optimal set of BPNN parameters that

maximize the accuracy and effectiveness of concurrency control decisions. The

main contribution of the model includes:

• The development of a hybrid concurrency control approach combines optimistic

and pessimistic approaches and then dynamically selects the concurrency control

technique for the corresponding transaction sets using the conflict rate.

• The BPNN determines whether to select the optimistic or pessimistic model to

determine the committed or successful transaction.

• The parameters of BPNN are optimized by using the BSSA to enhance the

performance and efficiency of the model.

•Evaluations are performed in a small bank model of transaction processing in

which the optimistic or pessimistic approach is selected for the customer and

internal bank transactions.

5

1.5. THESIS ORGANIZATION

 The thesis chapters are outlined as:

 Chapter 1 gives an introduction to the motivation behind the research . It also

elaborates on the problem description. The objectives from research and

contribution of research .

Chapter 2 gives an introduction to the distributed database management systems

are explained in detail. It also includes the concepts, characteristics and types of

DDBMS. It also elaborates on the DTP, and ACID properties along with the

concurrency control problems, and strategies. The existing research based on the

DTP, concurrency control methods and hybrid concurrency control methods along

with the inference and limitations are discussed. also discusses the Design of

concurrency control in DDBMS. It includes algorithms of distributed concurrency

control, the structure of a distributed transaction, and modeling of DDBMS and

concurrency control protocols for the DDBMS model.

Chapter 3 gives an overview of the methodology of the hybrid concurrency

control. The methodology includes transaction management, back propagation

neural network (BPNN) and bear smell search algorithm (BSSA). The integrated

technique BPNN- BSSA for the hybrid concurrency control model is also

explained in detail along with the implementation of the model in this chapter.

Chapter 4 discusses and analyses the results that are obtained from the model. It

also includes the experimental setup along with the evaluation metrics. The

performance results are analyzed in this chapter.

Chapter 5 encompasses a summary discussion, conclusion, and the conclusive

results derived from the research. Additionally, it integrates potential findings for

future research, aligning with current demands and requirements.

6

1.6. CHAPTER SUMMARY

In this chapter, the management of concurrent transactions and their properties of

consistency and isolation across a distributed environment are briefly explained,

with a focus on hybrid control methods and a discussion of the models and

methodologies that have been developed. Recent and current research on

distributed transaction processing and concurrent control methods has been

extensively reviewed

7

CHAPTER 2

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS AND

DESIGN OF CONCURRENCY CONTROL IN DDBMS

INTRODUCTION

The Distributed Database Management Systems have gained a vital importance in

this interconnected world. It is important to understand the characteristics,

architecture and various aspects to effectively manage and process data in a

distributed environment (Diallo et al., 2013). This chapter provides a detailed

introduction to the various concepts and gives an in-depth exploration of each

aspect. This chapter discusses the characteristics, types, and ACID properties along

with transaction processing and management. This research thoroughly illustrates

the objectives and motivation behind its methodologies.

This research analyzed hybrid concurrency control techniques which integrated

optimistic and pessimistic methods for transactions in a distributed database

(DDB) system. The primary objective of the work is to effectively enhance the

efficiency and performance of the model. This research also helps in managing the

transaction and versioning mechanisms which ensure and enhance the concurrency

control. The research integrates neural network and optimization techniques to

address the challenges associated with concurrent access to shared resources in a

database system. The Hybrid Concurrency Control Technique helps in selecting

the concurrency approaches and the neural network determines to grant lock for

winning transactions and finally optimization technique to optimize the parameters

for better performance of the model with increased efficiency.

Design of Concurrency Control refers to the design principles and strategies

involved in implementing concurrency control mechanisms within a DDBMS.

Concurrency control ensures that multiple users or transactions can access and

modify shared data simultaneously without causing inconsistencies or violating

integrity constraints. In DDBMS, where the database is distributed across multiple

nodes in a network, designing effective concurrency control mechanisms is crucial.

This involves selecting appropriate algorithms like locking or Timestamp ordering,

defining transaction management protocols to maintain ACID properties,

addressing issues of replication and consistency through techniques such as

distributed locking and commit protocols, specifying isolation levels,

implementing deadlock detection and resolution mechanisms, optimizing

8

performance to minimize overhead, and tackling challenges such as

communication overhead, data distribution, fault tolerance, and scalability

2.1. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

Due to the advanced technologies in database and storage, the company has a

concentrated database at one mainframe or the computer server connected to the

internet for worldwide access. This method has a disadvantage in that if anyone's

site is blocked or goes down, all the connected sites also get blocked from

accessing the data from the database until the overall system gets back up. To

address and avoid these problems a centralized database also known as a

distributed database (DDB) is created. The DDB is a collection of interconnected

databases which are distributed across a computer network. Distributed Database

Management System (DDBMS) is a software system which is created to manage,

maintain and control databases which are physically distributed across multiple

locations. The DDBMS manages the DDB and provides the access to the user

(Dinh et al., 2018). The objective of DDBMS is to deliver transparent access to

data along with data integrity, consistency and availability.

The data are distributed in multiple locations which are influenced by factors like

geographical dispersion of organization, data replication for fault tolerance and

requirements for performance. DDBMS is used to handle and analyze data within

the distributed settings. The database also provides a transparent and unified view

of data, which allows the users and applications to access, maintain and manipulate

the data which are stored in a single and centralized database. The DDBMS

integrates various methods and techniques such as data fragmentation, replication,

distributed transaction management, concurrency management control and query

processing in distributed systems (Gharaibeh et al., 2017). The methods are used to

enhance and ensure the integrity and consistency of data. This is also used to

handle limitations in distributed environments namely network failures, site

failures and concurrent access to data.

9

2.1.1. Characteristics of Distributed Databases

The DDB has several Characteristics which are used to understand, implement and

manage the DDBMS (Coronel et al., 2019). The main characteristics are as

follows:

1. Data Distribution: the data is physically dissipated across various sites or

nodes within a computer network rather than centralized as a single

database. The data distribution means that the data is partitioned and stored

in different locations.

2. Data Replication: The data can be duplicated (replicated) across various sites

which improves the scalability, availability and reliability. This method also

ensures if one site fails or gets down, the data can be accessed from other

sites.

3. Fragmentation: The data in DDB can be partitioned into smaller units or

fragmented called fragments. These fragments can be either horizontally or

vertically distributed across the systems or sites based on the performance,

usage patterns and security requirements.

4. Transparency: this refers to the ability to hide the complexities of the data

distribution and fragmentation details from the users and application.

5. Heterogeneity: the database can be heterogeneous, which can integrate

different types of database management systems (DBMS) and data models.

This method allows the users to leverage the existing models and

technologies.

6. Distributed Transaction Processing: To maintain the ACID properties across

multiple sites, the transactions in a DDB require a specialized protocol like a

two-phase commit (2PC) or a three-phase commit (3PC), this processing is

called distributed processing.

7. Fault Tolerance: The DDB is designed to handle failures like site failures,

network failures or communication failures. To ensure fault tolerance

techniques like data replication, failover mechanisms and recovery

procedures are developed.

8. Performance and Scalability: By processing and distributing the data across

multiple sites, DDB can enhance and improve performance and scalability

by leveraging parallel processing and load-balancing techniques.

9. Data Communication cost: Effective management of data communication

costs involves optimizing network resources, minimizing data transfer,

ensuring efficient communication protocols and prioritising critical data.

10

10. Reliability: Reliability refers to the DDB consistently and accurately

storing, retrieving and processing data despite various failures. High

reliability in DDB involves implementing robust fault-tolerance mechanisms

and maintaining redundant copies of data.

2.1.2. DDBMS Architecture

The architecture of DDBMS comprises various components and layers to manage

and process the data across the distributed environment. There are various methods

for dividing the functionality among various processes related to DDBMS

(Abdelhafiz et al., 2020). The architecture of DDBMS includes Client/server

systems, Collaborating server systems and middleware systems.

CLIENT/SERVER SYSTEMS:

A client/server system has one or more servers and one or more client processes, in

which the user can send a request or a query to any server for processing. The user

interfaces or applications that interact with the DDBMS for performing data-

related operations such as updating, querying and retrieving information are

processed in the client system. Database server manages retrieval, data storage and

processing tasks. The server systems also handle the request from the client,

coordinate communication with other components and execute database operations

in DDBMS architecture (Özsu et al., 1999). The Client/server system consists of a

number of clients and a few servers connected to the network. The client can send

a request/query to any one server. This architecture is easy to implement and

executes the process.

11

Figure 2.1 represents the architecture of a Client/server with two clients and a

server connected through a network.

Figure 2.1 Client/server architecture

There are three different client/server architectural approaches, they are:

1. Two-Tier Client/Server Architecture

2. Three-Tier Client/Server Architecture

3. Multi-Tier Client/Server Architecture

2.1.2.1 Two-Tier Client/Server Architecture:

In the two-tier architecture, the model is classified into two main components such

as the client and the server. The two-tier architecture process is similar to the

Client/server application where the client manages the application's logic and user

interface and the server manages the queries and processing tasks. The main

features of this architecture include that the model is easy to implement (Ali et al.,

2020). Since the model has direct communication between the client and the server

the performance of the system is also enhanced.

Client 1

Client 2

Network

Server

12

Figure 2.2 Two-Tier Client/Server Architecture

Figure 2.2 represents the Two-Tier Client/Server Architecture, which includes the

Client Tier and Database Tier

2.1.2.2 Three-Tier Client/Server Architecture:

In the three-tier architecture, a middleware or the application server layer is

integrated between the server and the client layer. The middleware is considered to

be the intermediary between the client and the server which helps in handling tasks

including communication management, task processing and task execution. The

main advantage of the middleware layers is that the layer can distribute client

requests across multiple servers which enables load balancing and enhances

resource utilization (Abba et al., 2020). Figure 2.3 illustrates the architecture of a

Three-tier client/ server.

Client 1

Client 2

Database Server

Client tier Database tier

13

Figure 2.3 Three-Tier Client/Server Architecture

2.1.2.3Multi-Tier Client/Server Architecture:

The multi-tier architecture includes adding additional layers or tiers to the model to

accommodate the complex requirements of the application to execute the process.

The additional layers may include cache servers, security servers and messaging

servers (Olivares-Rojas et al., 2020). This model provides a flexible and scalable

framework to improve the performance and to support diverse computing

environments.

Application

Server

Client 1 Client 2 Client tier

Database tier

Client 2

Database

Database Server

Application tier

Data tier

14

2.1.3. Types of DDBMS

In distributed systems, data is spread across various database systems within an

organization. These database systems are interconnected through communication

links, facilitating access to the data for end-users. The DDBMS types are classified

as,

1. Homogenous DDBMS

2. Heterogeneous DDBM

1.Homogenous DDBMS:

Homogenous database systems operate on the same operating system, utilize the

same application processes, and employ similar hardware devices. Each site/query

runs the same type of DDBMS, ensuring uniformity across the distributed

environment (Mahajan et al., 2023). Homogeneous DDBMS encompass

Autonomous and Non-Autonomous subtypes.

i. Autonomous DDB: In Autonomous DDB, Each DDBMS operates

autonomously, exchanging messages to facilitate the sharing of data updates.

ii. Non-Autonomous DDB: In Non-Autonomous DDB, a primary DDBMS

manages database access and updates across the nodes.

2. Heterogeneous DDBMS:

Heterogeneous distributed database systems typically operate across diverse

operating systems, employ varying application procedures, and utilize different

hardware devices. Each site/query may run in different DDBMSs, including

various relational database management systems (RDBMSs) or even non-relational

DBMSs (Zhang et al., 2023). This means that different DDBMSs are employed at

each node within the system. Heterogeneous DDBMS encompass Systems and

Gateways as subtypes.

i. Systems : This provides support for either some or all of the functions within

a single logical database. Systems are further classified as Full DBMS

functionality and Partial-multi database.

1.Full DBMS functionality: It encompasses all functionalities typically found in a

distributed database.

15

2.Partial-multi database: It provides support for certain functionalities of a

distributed database. Partial-multi databases are further classified into federated

Distributed Database and unfederated Distributed Database.

3.Federated Distributed Database: Facilitates the utilization of local databases to

fulfill specific data requirements. This can be again classified as loose integration

and tight integration.

a. Loose integration: In loose integration, various schemas are present for each

local database, requiring interaction between each local DBMS and all local

schemas.

b. Tight integration: A global schema exists and outlines the entire data

encompassing all local databases.

4. Unfederated Distributed Database: All access needs to be routed via a

centrally located coordinating module.

ii. Gateways: direct connections of simple paths are created to other databases, by

lacking the advantages of one logical database. The types of distributed DDBMS

are depicted in Figure 2.4.

Figure 2.4 Types of DDBMS

Types of DDBMS

Homogeneous Heterogeneous

Autonomous Non- Autonomous Gateways Systems

Full DBMS functionality Partial-multidatabase

Federated Unfederated

Loose Integration Tight Integration

16

2.1.4. Distributed Transaction Processing (DTP)

DTP refers to the management and coordination of transactions that span multiple

nodes, sites or queries in a distributed computing environment. A transaction refers

to a logical unit which consists of one or more database operations including write,

read or update. In distributed systems, a transaction involves modifying and

accessing data that are stored in different databases across different locations

across the network (Taft et al., 2014). The components in DTP include,

1.Transaction Manager: This is liable for correlating the execution of distributed

transactions. This method also ensures that transactions follow ACID properties.

The transaction manager initiates and monitors transactions, manages the state

information of the transactions and coordinates with the resource manager present

at each node.

2.Resource manager: The resources including databases, files and services are

managed by the resources manager in the distributed transactions. Each resource

manager is connected to the local database or resources, which are responsible for

executing transactional operations on those resources. This also ensures that the

transactional changes are committed or rolled back consistently across all

resources.

3.Concurrency Control: Concurrency controls are employed to manage

concurrent access to shared data by multiple transactions. This method includes

techniques like locking and timestamp ordering which prevents data

inconsistencies and ensures that the transactions are done consistently (Dickerson

et al., 2017).

4.Deadlock Detection and Resolution: DTP systems employ deadlock detection

algorithms to identify and resolve deadlocks that occur when transactions wait

indefinitely for resources held by other transactions. The technique for deadlock

resolution includes techniques like deadlock detection with timeouts or deadlock

prevention strategies. This method also helps to mitigate the impact of deadlocks

on system performance. DTP enables applications to perform complex

transactional operations across the distributed environment along with data

integrity, consistency and reliability in the distributed computing environments.

17

2.1.5. ACID (Atomicity, Consistency, Isolation, Durability)

Properties of Transactions

The ACID properties are the set of four characteristics which ensure the reliability

and consistency of transactions in database systems.

Atomicity: atomicity ensures that a transaction is treated as a single logical unit of

work. Either all of the transactions are completed successfully or all the

transactions are aborted. If any of the systems fail due to an error and system crash,

the entire transaction is rolled back to its initial state (Lotfy et al., 2016). This

atomicity property ensures the consistent state of the database.

Consistency: this is considered to be a vital property which ensures the consistent

state for each database instance. This also assures that the database remains in a

valid state before or after the execution. Each transaction must maintain the data

integrity, data validity and constraints that are given by the schema (Xia et al.,

2016). If any transaction ignores the rules or constraints, the transaction will be

aborted and the database will be reverted to the previous consistent state.

Isolation: The isolation property guarantees that transactions execute

independently of each other without interference. Each transaction operates in

isolation from others until the completion of the transaction. This also assures that

the intermediate results of the transactions are not visible or accessible to other

transactions. Isolation levels such as read committed, read uncommitted and

repeatable read provide different levels of isolation to control the visibility and

accessibility of data among the transactions.

Durability: Durability ensures that the committed transactions persist even when

the system fails or crashes. Once the transactions are completed and committed

successfully the changes are saved permanently which cannot be lost due to

hardware failures, system crashes or power failures (Chittayasothorn 2022). These

changes are typically recorded in non-volatile storage to ensure durability.

The ACID properties ensure that the database transactions are executed reliably,

and consistently which enhances the data integrity and isolation even in the system

failure or errors. This helps to build robust and transactional consistent database

systems.

18

2.1.6.Transaction Management applications

Transaction management applications in DDBMS involve handling transactions

that span multiple nodes or sites within a distributed computing environment

(Muslihah et al., 2020). The common transaction management applications in

DDBMS include,

1. E-commerce Platforms: E-commerce Platforms facilitate transactions

between buyers and sellers over the Internet. The transaction details such as

placing orders, inventory updates, payment processing and generating

invoices involve interacting with a distributed database that stores product

details and transaction records.

2. Supply Chain Management: Supply Chain Management correlates the

flow of goods, information and finances across a distributed network

between the suppliers and manufacturers. The transaction details like

processing and management require access to DDB at different points in the

supply chain.

3. Enterprise Resource Planning (ERP): An ERP system combines multiple

business functions such as finance, human resources, manufacturing, and

sales into a unified platform. Transactions in ERP systems involve activities

such as processing purchase orders, generating invoices, recording payroll,

and managing inventory, which may extend to multiple departments or

locations within an organization.

Transaction management mechanisms such as distributed concurrency control,

distributed deadlock detection, and distributed recovery protocols are employed to

coordinate and manage transactions effectively across distributed databases.

2.1.7.Concurrency Control Problem

A database system operates with high concurrency, and increases the conflicts,

particularly when two concurrent transactions attempt to update the same data

simultaneously. If only one transaction were allowed to execute at any given time,

operations would proceed sequentially without issue (Harding et al., 2017).

However, challenges arise when multiple transactions are updated to the same

database item concurrently, while still upholding data consistency. The

concurrency problem arises due to the following factors,

1. Data Inconsistency: Concurrent execution of transactions can lead to data

inconsistency if transactions read and write data simultaneously without

19

proper coordination. For example, if two transactions read the same data

concurrently and perform conflicting updates, this results in an inconsistent

state of the database.

2. Lost Updates: When several transactions endeavour to modify the same

data simultaneously, loss of updates can occur, where one transaction's

changes overwrite another transaction's changes without being properly

reflected. This can lead to the loss of valuable data modifications and

compromise data integrity.

3. Uncommitted Data: Transactions may read intermediate or uncommitted

data produced by other transactions, leading to inconsistent or incorrect

results. This phenomenon, known as dirty reads, this situation arises when a

transaction accesses data that has been altered by another transaction but

hasn't been finalized or committed.

4. Concurrency Anomalies: Concurrent execution of transactions can result in

various concurrency anomalies such as dirty reads, non-repeatable reads, and

phantom reads. These anomalies occur due to the interleaving of transaction

operations and can lead to unexpected or incorrect query results.

5. Deadlocks: Concurrent transactions may compete for resources, leading to

deadlock situations where transactions wait indefinitely for resources held

by other transactions (Neumann et al., 2015). Deadlocks can result in system

performance degradation and deadlock resolution overhead.

2.1.8.Concurrency Control Strategies

Concurrency control strategies are techniques employed in database management

systems to ensure that transactions execute in a controlled manner, minimizing the

risk of data inconsistency and preserving data integrity in a multi-user

environment. This method also ensures that transactions execute safely and

efficiently in a multi-user environment (Al-Qerem et al., 2020). The concurrency

control strategy depends upon factors such as system requirements, transaction

workloads and characteristics along with the performance. The concurrency control

strategies are classified into:

1. Optimistic Concurrency Control

2. Pessimistic Concurrency Control

3. Hybrid Concurrency Control

20

Optimistic Concurrency Control (OCC): allows transactions to execute without

initially obtaining locks. Instead, it detects conflicts at the time of transaction

commit. Transactions record their read and write sets during execution (Jepsen et

al., 2018). At commit time, conflicts are checked, and the transaction is either

committed or aborted based on the presence of conflicts.

The optimistic approach defers the checking of concurrency constraints, such as

ensuring transaction isolation and other integrity rules like serializability and

recoverability, until the transaction's completion. This method avoids blocking

transactional operations and only aborts the transaction if it violates the desired

rules upon committing. When a transaction is aborted, it is promptly restarted and

re-executed, which does entail some overhead. However, in a multiuser transaction

environment where relatively few transactions are aborted, the optimistic

mechanism proves to be effective in achieving its intended purpose. Optimistic

concurrency control is well-suited for environments where conflicts are infrequent,

such as read-heavy workloads or scenarios with low contention for resources

(Bernstein et al., 2015). It avoids the overhead associated with locking and can

lead to improved throughput and reduced contention. Optimistic concurrency

control offers a balance between ensuring data consistency and maximizing

concurrency, making it a valuable strategy in many database systems, particularly

those with high read/write ratios.

Pessimistic Concurrency Control (PCC): PCC is a strategy used in database

management systems to ensure transaction isolation and maintain data consistency

by pessimistically assuming that conflicts will occur and taking preemptive

measures to prevent the conflicts. Pessimistic Concurrency Control provides a

conservative approach to concurrency management. While it ensures transaction

isolation and data consistency, it can lead to increased contention and reduced

concurrency, especially in environments with high transaction rates.

Pessimistic concurrency control is executed via locking. Once a transaction

acquires a lock on a data object, it remains locked, preventing other transactions

waiting for the same data object from accessing it. Only when the transaction that

initially obtained the lock releases it can other transactions acquire the lock on the

same data object. In the pessimistic locking method, data scheduled for updates is

preemptively locked. Once locked, the application can proceed with the

modifications, and then either commit or rollback the transaction, which

automatically releases the lock (Chaudhry et al., 2022). If another transaction tries

21

to obtain a lock during this process on the same data, it will be compelled to

wait/queue until the first transaction concludes. This method involves acquiring a

write lock on the object, executing its operations, copying the updates, and

subsequently releasing the lock on the object. This approach operates on the

assumption that another transaction may alter the data between the read and the

update. To avoid such changes and data inconsistency, the read statement secures

the data, preventing any alteration by other transactions.

Hybrid Concurrency Control: Hybrid concurrency control techniques have

emerged as a promising solution for transaction processing in distributed database

systems. These techniques aim to integrate the benefits of optimistic and

pessimistic concurrency control strategies. The hybrid approach is the adaptive

concurrency control, which dynamically adjusts its concurrency control strategy

based on the current workload characteristics and system conditions. This monitors

various parameters such as transaction arrival rates, data contention levels, and

system resource utilization (Stephan et al., 2017). Based on these parameters, it

adapts its concurrency control strategy, employing either optimistic or pessimistic

techniques as appropriate. This adaptive approach aims to provide the best

performance and concurrency levels by tailoring the concurrency control

mechanism to the prevailing workload conditions.

1. Pessimistic Component: In the hybrid concurrency control approach, specific

transactions may utilize a pessimistic locking strategy to ensure access to critical

data. Pessimistic locking is typically used for transactions that involve highly

sensitive or frequently accessed data, where the risk of conflicts and contention is

high (Wu et al., 2017). Pessimistic concurrency control maintains transaction

isolation reduces the chances of conflicts by obtaining locks on data items in

advance, and prevents concurrent transactions from accessing or modifying the

same data simultaneously.

2. Optimistic Component: Optimistic concurrency control is often employed for

transactions that involve less critical or less frequently accessed data, where

conflicts are less likely to occur. Instead of acquiring locks preemptively,

optimistic concurrency control mechanisms rely on conflict detection and

resolution mechanisms to address conflicts at the time of transaction commitment

(Wei et al., 2018). If conflicts are detected during the commit, the transaction may

be aborted and restarted to ensure data consistency.

22

3. Dynamic Selection: The decision to use pessimistic or optimistic concurrency

control for a particular transaction may be dynamically determined based on

factors such as transaction characteristics, data access patterns, and system

workload. Transaction scheduling algorithms or policies may be employed to

analyze transaction requirements and select the most appropriate concurrency

control strategy for each transaction dynamically.

For example, transactions accessing critical or highly contended data may be

assigned pessimistic locking, while transactions accessing less critical or less

contended data may be assigned optimistic concurrency control.

The main advantage of Hybrid concurrency control is flexibility and adaptability

which allows database administrators or developers to tailor concurrency control

strategies to the specific needs and characteristics of their applications and

environments. This method integrates the strengths of pessimistic and optimistic

concurrency control, the hybrid approach can provide improved performance,

scalability, and resource utilization in database systems with diverse transaction

workloads and access patterns.

23

A BENEFITS AND LIMITATIONS OF HYBRID CONCURRENCY

CONTROL MODEL FOR TRANSACTION PROCESSING

BENEFITS LIMITATIONS

1. It combines benefits of both optimistic

and pessimistic methods to optimize

performance and ensure data

consistency

2. Transactions are initially executed

optimistically, allowing them to

proceed without acquiring locks

3. the system monitors for potential

conflicts using techniques such as

validation checks or versioning

mechanisms

4. . If conflicts are detected, the system

switches to a pessimistic mode, where

transactions acquire locks on data

items

1. Integrating the Multiple concurrency

control mechanism without increasing

the complexity of the system is the

primary challenge in hybrid

concurrency control.

2. Coordinating various approaches in a

highly concurrent environment

increases the synchronization

overhead and degrades the consistency

3. The model adds to space complexity

by storing multiple types of

information, including transaction

status and details, within the system.

4. exhibit limitations such as high abort

rates, long execution times, and

scalability issues.

Table 2.1 benefits and limitations of hybrid concurrency control model

2.2. LITERATURE REVIEW

The increasing application and effectiveness of the Hybrid Concurrency

Control Technique for Transaction Processing in Distributed Database

Systems have propelled the IT industry towards a modern computing model.

While Hybrid Concurrency Control has a huge volume of potential, it also

has a lot of challenges to overcome. This chapter discusses the recent

research works on Distributed Transaction Processing, Concurrency Control

Methods and Hybrid Concurrency Control Methods to upgrade the

distributed database environment.

24

2.2.1. Distributed Transaction Processing

This section of the research model concentrates on conducting a

comprehensive examination of different Distributed Transaction Processing

methods as well as identifying the limitations present within the system.

1. Yao et al., (2018) presented a novel concurrency control protocol called

Distributed Dependency Graph Concurrency Control (DistDGCC) and a

new logging technique called Dependency Logging for distributed in-

memory OLTP systems. DistDGCC processed transactions in batches

resolved dependencies and built dependency graphs before execution,

reducing aborts and thread blocking. Dependency Logging exploited the

dependency graphs constructed by DistDGCC for efficient logging and

parallel recovery. Two variants are proposed, fine-grained and coarse-

grained Dependency Logging, trading off between log size and recovery

parallelism. DistDGCC constructed dependency graphs in parallel,

resolving intra- and inter-transaction dependencies for local and

distributed transactions. Dependency Logging transforms these graphs

into log records with dependency information. Experiments on YCSB and

TPC-C showed that DistDGCC outperformed 2PL and OCC in throughput

and latency with distributed transactions and dependency Logging

achieved higher runtime performance and faster recovery than ARIES

logging. Yet, the model lacked balance to log granularity and recovery

parallelism.

2. Lokhande et al., (2019) proposed an innovative method for ensuring

secure, energy-efficient, and scalable transaction management within

heterogeneous distributed real-time replicated database systems. This

model incorporates several components, including workload

characterization utilizing K-means clustering, resource allocation

facilitated by the provision of virtual machines, and the implementation of

security measures through encryption and decryption of user data. The k-

means clustering algorithm is used for workload characterization and task

classification, and Amazon AWS services like EC2, DynamoDB (cloud

database), and S3 are utilized for resource allocation and data storage.

AES algorithm is used for encryption and decryption of user data to

ensure security. The performance of the proposed system is evaluated

25

based on parameters like throughput, CPU utilization, energy efficiency,

scheduling time, and response time. The model provided secure data

storage and transaction management in cloud environments. Yet, the

model lacked a clustering technique for workload characteristics.

3. Dong et al., (2020) presented a new concurrency control protocol called

Deterministic and Optimistic Concurrency Control (DOCC) for

deterministic databases. DOCC allowed the optimistic execution of

transactions and enforced determinism lazily, improving scalability within

a single node. It used multi-version snapshots to prevent read-only

transactions from blocking execution and employed data prefetching to

speed up transaction retries. The model evaluated DOCC using the TPC-C

on an 8-node cluster and showed that DOCC outperformed the popular

deterministic database Calvin by 4.31x to 8.46x under low and high

contention scenarios, respectively. DOCC achieved better performance by

exploiting parallelism opportunities and reduced overhead from

deterministic locking. The advantages of DOCC include improved

scalability, better performance under contention, and increased generality.

However, the paper does not address the potential scalability issue of the

sequencer component in a larger distributed setting.

4. Dizdarevic et al., (2021) presented a novel approach called Rose Tree

Based Consistency/Rose Tree Algorithm (R-TBC/RTA) for managing

consistency in highly-distributed transactional databases in a hybrid cloud

environment. The model proposed a visible adaptive consistency model

and the R-TBC/RTA approach based on Bayesian hierarchical clustering

and Graph Partitioning Algorithm (GPA-BHC) for intelligent partitioning

of the cloud database. Constructing the R-TBC tree using the Rose Tree

Algorithm (RTA) and distributing database partitions across the tree

structure based on PEM (Performance, Efficiency, and Manageability)

metrics. Experimental validation of the R-TBC/RTA approach

demonstrated improved response time, reduced inconsistency window,

and better load balancing. The study is limited to a specific scenario for

energy sector companies.

26

5. Yamada et al., (2022) introduced Scalar DL, a middleware designed for

transactional database systems to detect Byzantine faults (BFD). Scalar

DL enabled the concurrent execution of non-conflicting transactions while

maintaining strict serializability. The process involves three phases

ordering, committing, and validation, which occur between a primary and

secondary server situated in distinct administrative domains. In

comparative evaluations, Scalar DL surpassed the other BFD approach by

a factor ranging from 3.5 to 10.6 times in terms of throughput. Scalar DL

exhibited effective performance across various database implementations.

Moreover, it demonstrated near-linear scalability of 91% with an increase

in the number of nodes composing each replica. However, it's worth

noting that Scalar DL is limited to supporting only two administrative

domains.

6. Ali et al., (2022) presented a practical framework for creating a Proxy

Database to prevent direct access to distributed transaction databases and

ensure information security. The proposed approach entails establishing a

Proxy Database comprising a collection of proxy tables and views sourced

from various relational distributed databases operating across different

domains within an organization. The model created proxy tables that

provide roundabout access to data in distributed tables, maintaining

location transparency, and mapping proxy tables with local distributed

tables and views. It submitted queries on proxy tables, which are

decomposed into sub-queries and executed on respective local databases,

with results composed and returned. The model handled local database

structure differences and propagating changes to the Proxy Database to

maintain consistency and implemented a software firewall for network

security, with the Proxy Database Server and local databases behind the

firewall. The advantages include improved security, location

transparency, and efficient data retrieval through a single query across

multiple databases. However, the document does not provide a detailed

analysis of query processing, optimization techniques, or performance

evaluation.

7. Diop et al., (2022) proposed a DDSampling algorithm for randomly

drawing patterns from a transactional distributed database, with

probability proportional to an interestingness measure combining

27

frequency and length-based utility functions. The model utilized a

decentralized approach which avoids centralizing the entire database by

just centralizing the lengths of transaction parts from each fragment and

the pre-processing phase computes a weight matrix M containing the

lengths of each transaction in each fragment. The pattern drawing phase

used M to randomly draw a transaction identifier based on weight, and a

length based on weight and then samples a pattern of length from the

transaction identifier. The experiments evaluated DDSampling on

datasets, showed its lower communication cost compared to

centralization, and its robustness against node failures. Yet, the model only

analysed communication cost, without detailed results on computational

efficiency.

8. Shen et al., (2022) presented DrTM+B, a dynamic live reconfiguration

method designed for distributed transaction processing systems. DrTM+B

utilized a pre-copy-based mechanism to minimize performance disruption

during live reconfiguration processes. It leveraged common features found

in modern transactional systems, such as data replication for fault

tolerance, DrTM+B and reduced data transfer and downtime. The system

employed a cooperative commit protocol to synchronize data and state

among replicas, ensuring consistency. Additionally, DrTM+B introduced a

hybrid copy scheme that combines pre-copy and post-copy approaches to

enhance performance during data migration. Evaluation of a functional

system based on DrTM+R with 3-way replication, using TPC-C and

SmallBank workloads, indicates that DrTM+B experiences only minor

performance degradation during live reconfiguration while maintaining

high availability. Furthermore, reconfiguration time and downtime are

kept minimal.

9. Pan et al., (2023) presented a novel and practical atomic commit protocol

called Failure-Aware Atomic Commit (FLAC) for distributed transaction

processing. The model used a robustness-level state machine (RLSM) to

monitor the operating environment and dynamically switch to the most

suitable protocol. RLSM's parameters are fine-tuned by reinforcement

learning to adapt to unstable environments. The experimental results

showed that FLAC achieved up to 2.22x throughput improvement and

28

2.82x latency speedup compared to existing protocols in high-contention

workloads. The limitations include higher message complexity when

transactions involve many participants and potential liveness.

10. Bharati et al., (2023) presented a novel hybrid graph partitioning and

optimized load-balancing approach for scalable distributed transactions.

Hybrid Graph Partitioning (HGP) combines vertical and graph

partitioning to effectively partition data based on related content. The

optimized Load Balancing (OLB) approach calculated the weight factor,

average workload, and partition efficiency and balanced the load across

partitions. The proposed approach is evaluated using the TPC-E OLTP

benchmark dataset. Performance metrics like throughput, response time,

distributed transactions, and CPU utilization are analysed. The results

showed significant improvement over existing approaches like schema-

level partitioning, scalable partitioning, and graph partitioning. Effective

data partitioning with related data items improved transaction processing

and optimized load balancing which enhanced performance for increasing

workloads. Yet, the model lacked handling skewed data distributions.

11. Zhang et al., (2023) proposed RedT, a novel distributed transaction

processing protocol for heterogeneous networks RDMA within data

centres and TCP/IP across data centres. The model used a pre-write-log

mechanism and reduced inter-data-centre round-trips from 6 to 2 and

extended sub-transactions from replica granularity to data centre

granularity, leveraging RDMA for intra-data-centre communication. The

model evaluated on YCSB and TPC-C benchmarks showed RedT and

achieved up to 1.57x higher throughput and 0.56x low latency. However,

RDMA currently limited to local area networks, may not scale to wide

area networks.

12. Poudel et al., (2024) introduced offline algorithms such as OFFEXEC,

designed for optimal execution time, and OFFCOMM, aimed at achieving

2-competitive communication costs. The model also proposed both partial

and fully dynamic algorithms to optimize both execution time and

communication costs within distributed transactional memory systems.

29

These algorithms were developed to provide efficient solutions for

ordered scheduling. The efficacy of these algorithms was assessed through

rigorous analysis and validation via various benchmarks applied to

random and grid graphs. The model evaluated the ordered scheduling

challenges inherent in committing transactions based on predefined

priorities within the control-flow distributed transactional memory model.

However, the model concentrates on the control-flow model and the

results may not extend to other models.

13. Weng et al., (2024) presented Lauca, a workload replicator that generates

synthetic workloads for benchmarking transactional database

performance. The model introduced Transaction Logic, Data Access

Distribution, and Partition Access Distribution to characterize the runtime

workload attributes of OLTP applications. The model also proposed

algorithms to synthesize workloads and data, ensuring similarity in

execution semantics between synthetic and real application workloads.

Transaction Logic captured transaction structure and parameter

dependencies, data Access Distribution models skewed, dynamic, and

continuous data access patterns and partition Access Distribution controls

distributed transaction ratios for distributed databases. Extensive

experiments on centralized (MySQL) and distributed (TiDB, OceanBase)

databases showed that Lauca consistently generated high-quality synthetic

workloads. Yet, the model Parameter dependencies in Transaction Logic

are not exhaustively defined.

14. Kniep et al., (2024) introduced Pilotfish, the first distributed execution

engine for blockchains that can scale out by leveraging multiple machines

and executionWorkers under the control of each validator node. The

methods utilized are a protocol to efficiently fetch transactions from

SequencingWorkers and dispatch them to appropriate ExecutionWorkers.

An efficient memory-storage interface to handle partial crash recovery

across workers A novel versioned-queue scheduling algorithm to support

dynamic reads/writes while allowing concurrent execution. The results

showed that for compute-intensive workloads, Pilotfish achieved linear

scalability in throughput as more ExecutionWorkers were added, reaching

30

up to 8x higher throughput. The model limitations include slightly

sublinear scalability for non-compute-bound workloads.

15. Nikolić et al., (2024) presented the Service Proxy Transaction

Management (SPTM) approach for providing scalable reads and ACID

transactions in microservice architectures (MSA). The model used

inbound messages to services for transaction management, making it

transparent to services and also utilized Multi-Version Concurrency

Control (MVCC) with timestamp ordering for concurrency control. The

model implemented a transaction manager called fed-agent based on the

SPTM approach. The results showed that the fed agent outperforms 2PC

by up to a factor of 2 in low-medium contention scenarios and provided

high consistency. However, limitations include performance degradation

in high contention scenarios and the potential for a high number of

aborted transactions.

2.2.2. Concurrency Control Methods

In this part, the research model focuses on concurrency control methods and

limitations that exist in the system.

1. Sheikhan et al., (2013) presented a neural-based concurrency control

(NCC) method for database systems. The approach utilized the Adaptive

Resonance Theory 2 (ART2) neural network to compute a health factor

(HF) for transactions, aiding in determining the winning transaction when

accessing database objects. Additionally, it factored in the optional

knowledge of readset (RS) and writeset (WS) before transaction

execution. Training the ART2 neural network involved transaction

features such as RS, WS, and user priority. HF was derived based on the

transaction and abort counts within each cluster generated by ART2, while

the NCC algorithm utilized HF or transaction effectiveness (TE) to select

the winning transaction. As a result, the model yielded 1954 aborts and an

execution time of 46745 seconds for 1000 transactions. The proposed

model demonstrated enhanced concurrency and performance by notably

reducing aborts. Yet the model performance improvement depends on

transaction rate and RS/WS knowledge and considers only serializability

criteria, not other correctness criteria.

31

2. Ramesh et al., (2015) presented a Hash-Based Incremental Optimistic

Concurrency Control (HBOCC) algorithm for distributed databases. The

approach implemented optimistic concurrency control within the

distributed database model. It addressed transaction conflicts by

employing the MD5 hashing algorithm to compute hash values for data

items before write operations. By comparing the current and previous

hash values, the model detected modifications made by concurrent

transactions, aiming to prevent unnecessary transaction restarts. This was

achieved by updating hash values and retrying the transaction. The model

yielded an execution time of 151 seconds for 1000 transactions. Findings

indicated that the HBOCC model exhibited reduced space complexity and

demonstrated superior performance, particularly with larger transaction

volumes. Limitations lacked exploring different hashing algorithms,

handling hash collisions, and addressing security concerns in distributed

environments.

3. Neumann et al., (2015) presented a novel multi-version concurrency

control (MVCC) implementation for main-memory database systems. The

model enabled efficient execution of both transactional and analytical

workloads while maintaining serializability guarantees. The method

involved updating data in-place, storing versions as before-image deltas,

and using precision locking for serializability validation and retained high

scan performance using VersionedPositions synopses. The model result

analysis showed that the MVCC model has overhead compared to single-

version systems, even with serializability. The model outperformed

existing MVCC implementations and scales well for both OLTP and

OLAP workloads. However, limitations include false positive aborts for

minimum/maximum aggregates due to the lack of predicate logging for

them.

4. Gohil et al., (2016) presented a research study on the development,

implementation, and performance evaluation of a concurrency control

algorithm called JAG_TDB_CC, tailored for temporal databases. The

proposed algorithm combined the advantages of both timestamp and

locking approaches for concurrency control and utilized Oracle 12c's

temporal validity support and efficient locking mechanism. The algorithm

32

prevented conflicting user sessions from acquiring locked resources rather

than blocking preventing indefinite waiting times. It incorporated a

System Change Number (SCN) as an extra concurrency parameter for

condition validation. The results showed a significant reduction in session

waiting times when compared to both pessimistic and optimistic

concurrency control techniques. However, the algorithm's application is

not tested in time-critical real-time database applications.

5. Wang et al., (2016) presented a novel concurrency control scheme called

Mostly-Optimistic Concurrency Control (MOCC) and enhanced the

performance of Optimistic Concurrency Control (OCC) for extremely

competed dynamic workloads on modern servers with thousands of CPU

cores. MOCC judiciously used pessimistic locking for suitable records to

prevent clobbered reads in scenarios with high conflict levels, while

retaining OCC's high performance for low-conflict workloads. MOCC

also introduced a cancellable reader-writer spinlock, MOCC Multi

Queuing Lock (MQL), which scales well on deep memory hierarchies

supports various locking modes and dynamically adjusts itself to optimize

performance for workloads with varying contention levels and access

patterns. Experiments on a 288-core server showed that MOCC

outperformed OCC and pessimistic locking by 8x and 23x, respectively,

for high conflict YCSB workloads and achieved 17 million TPS for TPC-

C and over 110 million TPS for YCSB without conflicts, 170x faster than

pessimistic methods. Yet, the MOCC lacked performance in distributed or

partitioned workloads.

6. Choi et al., (2016) presented a concurrency control method to provide

transactional processing for cloud data management systems (CDMSs).

The proposed method is based on Spark, a distributed processing

framework that operates in-memory the system employs the Resilient

Distributed Dataset (RDD) model to ensure fault tolerance. The method

loads the database from the CDMS into distributed main memory as an

RDD and manages versions of the RDD using multi-version concurrency

control. Evaluation results showed that the method scales well with the

number of transactions. The benefits of the proposed approach are its

ability to be seamlessly incorporated into current CDMSs without

modification and its scalability. Yet, the model lacks in overhead of

33

managing multiple versions of RDDs, which may impact performance for

large datasets.

7. Gohil et al., (2016) presented a study on the implementation of optimistic

locking and concurrency control for temporal databases using Oracle 12c

Enterprise Manager. The study creates temporal tables in Oracle 12c and

implements an optimistic locking mechanism using a trigger. The trigger

used a Record Change Number (RCN) to control concurrent updates to

the same row. Multiple user sessions are simulated to perform concurrent

updates, and the behaviour is observed graphically using Oracle

Enterprise Manager. The optimistic locking approach allowed conflicting

transactions to proceed without blocking each other, reducing the risk of

deadlocks. The session waiting time for conflicting transactions is

decreased compared to pessimistic locking. The graphical representation

illustrated the concurrency situations, locking, and unlocking scenarios

effectively. The study is limited to Oracle 12c and may not be directly

applicable to other database systems.

8. Mohana et al., (2017) presented a hierarchical replication and

multiversion concurrency control model for mobile database systems

(MDS). The methods involve estimating node distance, cluster formation,

replication, mobility prediction, and concurrency control using version

numbers and timestamps. The model chooses cluster heads (CHs) by

considering their distance relative to past node movements to handle

mobility and disconnections and replicates data from the server to nearby

CHs on demand or proactively. The model maintained a concurrency table

at each CH for each replicated data object. The results showed that the

proposed approach reduced energy consumption and overhead compared

to a concurrency control mechanism (CCM). It achieved 26% less

response time, 25% higher throughput, and 76% lower server load without

mobility. With mobility, it achieves 28% less response time, 16% higher

throughput, and 64% lower server load.

9. Jun et al., (2018) presented a concurrency control scheme for object-

oriented databases (OODBs). OODBs have complex modeling capabilities

compared to relational databases, necessitating more intricate concurrency

control mechanisms that can impact overall performance. The proposed

34

approach addresses the concept of class hierarchy within OODBs and

operates on an implicit locking scheme. It is specifically designed to

utilise data access frequency to mitigate locking overhead in comparison

to implicit locking methods. In cases where access frequency information

is unavailable, the scheme seamlessly operates similarly to existing

implicit locking mechanisms. The results demonstrated that the proposed

scheme outperformed implicit locking. The value of the results lied in

providing a more efficient concurrency control mechanism for OODBs,

potentially enhancing overall system performance. Limitations may

include the need for access frequency information and the complexity of

handling class hierarchies.

10. Liu et al., (2018) proposed an Adaptive and Speculative Optimistic

Concurrency Control (ASOCC) protocol for efficient distributed

transaction processing. The model dynamically adapts between OCC and

two-phase locking (2PL) based on data access frequency, and

speculatively restarting transactions early based on correlated data

accesses. The method classified data as cold (OCC), hot (2PL), and warm

(speculative restart) based on access patterns. It embedded 2PL into OCC

for hot data, performs validation and restart for warm data correlated with

hot data. The speculation strategy saved CPU cycles wasted on

transactions destined to abort. Performance evaluation on TPC-C

workloads showed the speculative restart provided up to 35% throughput

gain for workloads with medium data correlation levels and moderate

distributed transactions, outperforming priority-based speculation.

However, the gain diminishes with excessively distributed transactions.

11. Wang et al., (2018) built a model, concurrency-aware model that

determined nearly optimal soft resource allocation for each tier by

integrating operational queuing laws with detailed online measurement

data. A dynamic concurrency management (DCM) framework was

developed, seamlessly integrating the concurrency-aware model to

dynamically reallocate soft resources during system scaling. The model

compared DCM with Amazon EC2-AutoScale using six real-world bursty

workload traces revealing DCM's prowess in significantly reducing

latency and increased throughput under all workload traces. During

system scaling the work highlighted the significance of coordinating

35

software and hardware resources. The proposed DCM framework

provides an intelligent approach to managing concurrency and improved

performance during scaling. Limitations include the overhead of the DCM

framework and its impact on system performance.

12. Ding et al., (2018) presented a framework for enhancing the performance

of OLTP systems based on OCC utilizing grouping transactions into

batches and rearranging operations. The model used storage batching to

reorder transactions performed reads and writes operations at the storage

layer to reduce conflicts involving identical objects and utilized validator

batching for reordering transactions before validation to reduce conflicts

between transactions. Efficient algorithms for transaction reordering based

on various precedence policies, including reducing tail latency and thread-

aware policies for multi-threaded architectures. Experiments are evaluated

on a research prototype, an open-source OLTP system, and a production

OLTP system demonstrated that the proposed techniques can increase

transaction throughput by up to 2.2x and reduce tail latency by up to 71%

on workloads with high data contention. The proposed framework

leveraged the unique opportunities for batching in OCC systems and

provides a holistic approach to improving performance through

transaction batching and reordering. It enables the use of OCC with

higher-contention workloads by reducing conflicts and improving

throughput and latency.

13. Guo et al., (2019) presented an Adaptive Optimistic Concurrency Control

(AOCC) for heterogeneous workloads in in-memory database systems.

The model identified the high cost of validating operations in transactions,

especially for key-range scan operations and under varying workloads.

AOCC adaptively chooses low-cost validation schemes based on the

operation types and workload characteristics at runtime and assigns

validation methods at the transaction level based on operation features,

and for each operation, it selects the validation method based on the

number of accessed records and workload characteristics. The method is

evaluated through experiments, showing good performance and scalability

under heterogeneous workloads with point accesses and predicate queries.

The model doesn’t include specific validation schemes or the adaptation

mechanisms used in AOCC.

36

14. Mohammad et al., (2019) proposed an improved algorithm called

Deadlock-Free Cell Lock (DFCL) for database concurrency control. A

DFCL implements cell-level locking and prioritizes transactions based on

the number of executed statements when addressing conflicts.

Additionally, it utilizes triggers to identify and resolve deadlocks by

aborting the transaction with the least number of executed statements.

Through simulations, DFCL achieved an average of 1234 committed

transactions, 266 rolled-back transactions, and an execution time of 3

seconds. The benefits of DFCL include enhanced concurrency, commit

rate, throughput, response time, and elimination of deadlocks. However, it

increases space complexity due to storing the status of each cell and

transaction details.

15. Nakamura et al., (2019) presented a study on integrating the TicToc

concurrency control protocol with the parallel write-ahead logging (P-

WAL) protocol. The integration of TicToc with P-WAL, a parallel logging

protocol designed for non-volatile memory, was employed in the model.

Four protocols were developed by combining TicToc with P-WAL, each

with or without ELR and group commit functionalities. These protocols

were implemented and assessed on multicore systems. The research

offered significant insights into the obstacles associated with merging

concurrency control and logging protocols. However, it is limited by the

use of a simplified database system and storage latency emulation.

16. Al-Qerem et al., (2020) introduced a new optimistic concurrency control

protocol variant for cloud-fog environments to reduce communication

overhead to the cloud server. The proposed augmented partial validation

protocol allows read-only IoT transactions to be processed locally at the

fog node, while only update transactions requiring final validation are sent

to the cloud. Update transactions go through partial validation at the fog

node first, increasing their likelihood of committing at the cloud. This

reduced cloud computational and communication while supporting

transactional service scalability for IoT applications. Experiments

compared the protocols with and without fog node partial validation

deployment. Results showed reductions in miss rate, restart rate and

communication delay across all three protocols when using partial

validation. Communication delay was significantly reduced, enabling fog

37

computing services with low latency to IoT applications that prioritize

minimizing delays. Limitations include the need for caching to

compensate for the abort rates introduced by optimistic concurrency

control.

17. Fan et al., (2020) proposed 2PC*, a novel concurrency control protocol

for distributed transactions across multiple microservice protocols. The

model introduced a Secondary Asynchronous Optimistic Lock (SAOL) to

replace the less efficient synchronous blocking lock, thus reducing

overhead stemming from transaction surges. Additionally, it employed a

runtime protocol based on directed graphs to streamline and reorder

transaction conflicts. Techniques such as TLA+ were utilized for protocol

correctness verification, while Least Recent Conflict Dependence (LRCD)

was adopted to simplify transaction conflicts. Furthermore, a middleware

implementation was developed using Spring-Boot and Netty. As a result,

the model achieved a response time of 623.2ms and processed

transactions at a rate of 304.6 per second. The outcomes demonstrated that

2PC* yielded higher throughput, with 67% lower latency and a superior

commit rate. However, the model failed to manage unsuccessful

transactions.

18. Jin et al., (2021) proposed a novel two-phase concurrency control protocol

to optimize the execution of smart contracts in permissioned blockchain

systems. The main node processed transactions concurrently through a

batching OCC protocol that involved transaction reordering. By

employing a greedy algorithm, the system tackled the Min-Density FVS

problem to create a transaction dependency graph (TDG) characterized by

significant parallelism. A graph partitioning algorithm then segmented the

TDG into sub-graphs, effectively minimizing communication overhead

while maintaining parallelism. Outcomes demonstrated notable speed

enhancements for the primary validators, coupled with a substantial 90%

decrease in communication overhead. The model limitations include the

NP-hardness of the optimization problems.

19. Liu et al., (2022) proposed a Scatter-Concurrency throughput (SCT)

model and identified the near-optimal resource allocation for each server.

The model also integrated concurrency awareness and enhanced the

38

reallocation of soft resources. The experiments are conducted for web

applications like EC2-autoscaling and Kubernetes HP. The model reduced

the response fluctuations time in the container-based environments.

20. Masumura et al., (2022) proposed a new concurrency control method

called Thread Activity Management (TAM) and its adaptive variant

(AdaTAM) for in-memory database systems. TAM regulated the number

of active worker threads and reduced contention and cache misses.

AdaTAM dynamically adjusted the number of active threads based on

throughput. The model hypothesizes that reducing the number of active

threads is the primary reason for performance improvement, rather than

reducing re-conflicting events. Experiments showed that Silo+TAM

outperformed under high-contention workloads and AdaTAM

automatically converged to the optimal number of active threads, making

it suitable for dynamic workloads. The paper does not explore applying

TAM to other concurrency control protocols.

21. Abduljalil et al., (2022) presented a new secure two-phase locking (2PL)

real-time concurrency control algorithm (ES2PL) for multilevel secure

distributed database systems. The proposed ES2PL algorithm introduces a

secure manager responsible for determining the security level and

handling transaction processing based on real or virtual locks and version

data. This method effectively mitigates transaction miss rates, deadlock

occurrences, unnecessary aborts, and the starvation of long-running

transactions. Simulation results indicate that ES2PL outperforms existing

algorithms such as S2PL, E2PL-HP, and RACE in terms of transaction

miss percentage, rollback frequency, and average number of committed

transactions. Specifically, the model achieves an average of 930

committed transactions, 180 rolled-back transactions, and an execution

time of 3 seconds. The benefits include enhanced concurrency,

throughput, response time, and overall database performance.

22. Liu et al., (2022) presented Multi-Clock Snapshot Isolation (MCSI), a

concurrency control mechanism for implementing isolation snapshots in a

non-volatile memory single-layer (NVM) database. The model used multi-

version storage to guarantee both durability and runtime access while

maintaining only a single copy of data and employed an efficient

39

generation of snapshots with vector clocks achieved through multi-clock

transaction timestamp assignment. The method used per-thread

transaction status arrays in NVM and identified uncommitted versions,

avoiding the need for centralized components like lock managers. Results

showed that MCSI's maximum transaction throughput is 101-195% higher

than PostgreSQL-style concurrency control for the YCSB workloads, and

25-49% higher for TPC-C workloads. Transaction latency remains stable

as thread count increases, the MCSI model provided 86.2μs being 65-84%

lower than the baseline for YCSB and 16-43% lower for TPC-C with 18

threads. However, the work is limited to snapshot isolation level only.

23. Di Sanzo et al., (2022) developed an analytical model to estimate the

performance effects of different data access patterns, including random

access, ordered access by all transactions, ordered access by a percentage

of transactions, and reverse-ordered access. The model's accuracy is

validated through extensive simulations, achieving a mean absolute

percentage error of less than 2.2% in the worst case. The findings are

demonstrated to have practical applications in improving the performance

of common transactional benchmarks by modifying the data access

patterns. However, the limitations are the focus on the ETL protocol and

the assumption of eager transaction aborts.

24. Xia et al., (2023) proposed a deterministic concurrency control approach

to efficiently execute blockchain transactions in parallel. The approach

divides transactions into batches to mitigate inter-batch conflicts, thereby

lessening the burden on proposers. Introducing a two-stage method known

as DVC aims to establish a partial order with significant parallelism. DVC

demonstrated an enhancement in speed of up to 5X, showcasing how data

skewness and transaction cost distributions impact the efficacy of various

strategies. However, the performance of DVC depends on the

effectiveness of the RedLS algorithm for vertex colouring.

25. Yadav et al., (2023) presented an architecture called Distributed

Processing and Concurrency Control in Cloud Databases (DPC2-CD) for

distributed processing and concurrency control in cloud databases over a

public cloud environment. The architecture comprised clustered ESX

40

servers, raw disks, storage arrays, and raw Logical Unit Numbers (LUNs).

To bolster hardware-level security, the architecture incorporated port

zoning, LUN masking, Raw Device Mapping (RDM), and N_port ID

virtualization (NPIV). Additionally, it implemented Database-as-a-Service

(DBaaS) for application-level security via data encryption. The algorithms

encompassed transaction decomposition based on data items, transaction

allocation to ESX servers with workload balancing, and a time-stamp-

based distributed locking protocol (TS-DLP) for concurrency control and

the release of locks upon commit. The model yielded an energy savings

boost of 20-25%. Nonetheless, it exhibited performance limitations in

dynamic environments.

26. Jingyao et al., (2023) presented an RDMA (Remote Direct Memory

Access) optimization technique for two-phase locking (2PL) concurrency

control in distributed databasesThe approach involved enhancing and

streamlining the lock acquisition and release processes of NO WAIT and

WAIT DIE 2PL algorithms using RDMA one-sided primitives. This

included introducing strategies like one-sided mutex lock and one-sided

mutex/shared lock. The research found that the one-sided mutex lock

strategy excelled in scenarios with minimal contention, whereas the one-

sided mutex/shared lock strategy performed better in situations with high

contention. Experimental findings from the YCSB benchmark

demonstrated that the optimized NO WAIT and WAIT DIE algorithms

achieved significant performance enhancements, with improvements of up

to 5.3x and 10.6x observed under high contention workloads. However,

the limitations include the complexity of implementing complex

operations using RDMA one-sided primitives and the potential

performance impact of retries due to atomicity violations.

27. Zhao et al., (2023) proposed RCBench, an RDMA-enabled transaction

framework that aimed to achieve transaction scalability over high-

performance RDMA networks. The approach involved abstracting six

concurrency control primitives, namely ReadD, WriteD, AtomicD, ReadT,

WriteT, and AtomicT, which leverage one-sided RDMA (Remote Direct

Memory Access) verbs for efficient remote data access. Additionally, the

model introduced optimization principles aimed at reducing RDMA verb

invocations during the re-implementation of various concurrency control

41

algorithms such as Two-Phase Locking (2PL), Optimistic Concurrency

Control (OCC), Timeout-based Concurrency Control (T/O), Multi-Version

Concurrency Control (MVCC), and Silo. The outcomes demonstrated that

RCBench achieved significant performance enhancements, with up to a

42X improvement over TCP/IP, by capitalizing on the capabilities offered

by RDMA. However, it is limited to static transactions and may require

changes for dynamic workloads.

28. Uchida et al., (2024) proposed a novel concurrent lock manager (CLMD)

for deterministic concurrency control protocols. CLMD enabled the

concurrent execution of non-conflicting transactions by assessing conflicts

between the current transaction and all subsequent transactions. It

managed lock requests without obstructing transactions and processed

non-conflicting transactions simultaneously. Findings demonstrated a

throughput increase of up to 44.4 times compared to traditional Calvin

when utilizing 64 logical cores, with transaction execution time averaging

1.49 seconds. Notably, CLMD eradicated the bottleneck caused by

unnecessary blocking in conventional lock managers. However, the

performance difference between CLMD and conventional methods

shrinks under low contention.

2.2.3. Hybrid Concurrency Control Methods

1. Sheikhan et al., (2013) proposed a novel hybrid optimistic/pessimistic

concurrency control (HCC) algorithm for centralized database systems using

a modified gravitational search algorithm (MGSA)-optimized adaptive

resonance theory (ART) neural model. The conflict rate of the transactions is

selected based on the optimistic and pessimistic methods. The MGSA-ART

model used the ART2 neural network with parameters optimized by MGSA

and calculated the health factor (HF) of transactions for comparing and

detecting the winner transaction. The proposed HCC algorithm was

evaluated in a simulated banking environment with different transaction

rates. The model resulted in 1049 number of aborts and an execution time of

37872s for 1000 transactions in pessimistic mode and in the optimistic

model number of aborts of 1328 and an execution time of 36248s for 1000

transactions. The results showed that when the transaction rate is 1000 per

second, the algorithm achieved a 35% reduction in the number of aborts.

42

The proposed model improved the concurrency and reduced aborts. The

model increased computational complexity.

2. Moiz et al., (2015) presented a hybrid concurrency control strategy for

mobile database systems. The proposed hybrid strategy combined the

benefits of pessimistic and optimistic approaches by using priority-based

locking. In this model, transactions are assigned priorities, initially set to

zero and executed optimistically, tolerating conflicts, with priorities

increased upon conflicts. Once a transaction reaches the maximum priority,

it acquires a lock and executes pessimistically for a limited time. After

execution, it releases the lock and reverts to optimistic mode. Simulation

results for an m-banking application scenario demonstrate improved

throughput, reduced waiting time, and a gradual decrease in starved

transaction requests compared to pure pessimistic or optimistic strategies.

Yet, the model lacked in determining appropriate maximum priority values

for different transaction types.

3. Yu et al., (2018) presented Sundial, a distributed concurrency control

protocol that addressed two major limitations of distributed transactions such

as high latency and high abort rates. The model dynamically determines the

sequencing of transactions during runtime determined by their data access

patterns using logical leases, which reduces transaction abort rates. It

allowed the database to cache remote data in the local main memory

maintain cache coherence and minimize the overhead associated with

accessing remote data. The model is implemented in Sundial in a distributed

DBMS testbed and the results showed that Sundial outperformed the

protocol that follows is outperformed by as much as 57% under conditions

of high contention and boosts performance by up to 4.6 times in scenarios

with significant access skew due to caching. However, it has limitations such

as extra storage overhead for maintaining logical leases and potential

performance degradation for partitionable workloads.

4. Gabriel et al., (2020) presented a hybridized concurrency control technique

that integrated two-phase locking and timestamp ordering for optimizing

transaction processing in distributed database systems. The hybridized

method proposed in the study improved performance by enabling certain

43

operations that would typically conflict in a strict two-phase locking

scenario, all while upholding data consistency. This technique involves

assigning global timestamps to transactions and permitting concurrent write

operations on the same data item by monitoring lock timestamps.

Experimental findings demonstrated that the hybridized approach completed

transactions approximately 30 seconds faster on average, resulting in

reduced execution times overall. The model lacked exploring factors like

system load in more complex scenarios.

5. Žužek et al., (2020) proposed an agile development methodologies like

Scrum have seen widespread adoption in software development due to

benefits like increased flexibility, faster time-to-market, and improved

productivity. Researchers have attempted to apply agile principles to

physical product development as well, creating hybrid models that combine

agile methods with traditional stage-gate processes. The proposed hybrid

maintains the overlapping stage structure but uses Scrum for day-to-day

work to increase agility. This facilitated faster requirements clarification and

change response. Potential benefits include improved efficiency, stakeholder

satisfaction, and competitive advantage through increased innovativeness

and flexibility. Limitations include the need for empirical validation,

analyzing project fit, addressing distributed team challenges, and

determining the ideal scope for applying Scrum across development loops.

6. Wang et al., (2021) presented RCC, a unified and comprehensive RDMA-

enabled distributed transaction processing framework (RDMA-RCC) that

supports six serializable concurrency control protocols. RCC enabled an

impartial and equitable comparison of the protocols conducted within a

standardized execution environment, where the concurrency control protocol

serves as the sole variable component. The model analysed stage-wise

latency breakdowns and developed effective hybrid execution which

leveraged both RDMA's two-sided and one-sided primitives for different

protocol stages. Hybrid implementations outperformed pure two-sided or

one-sided counterparts by up to 67% in throughput. However, the model

increased the complexity of the system load.

44

7. Lyu et al., (2021) present an extension to the Greenplum database system to

enable it to handle both Online Transaction Processing (OLTP) and Online

Analytical Processing (OLAP) workloads. Greenplum was traditionally an

OLAP data warehouse with limited OLTP capabilities. The model identified

bottlenecks like inefficient locking mechanisms and the two-phase commit

protocol that hindered OLTP performance. The methods utilized a global

deadlock detector to increase query concurrency, a one-phase commit

protocol when transactions update data on a single segment, and a resource

group model to separate OLTP and OLAP workloads for more suitable query

processing. The evaluation using TPC-B and CH-benchmark shows

improved OLTP performance without sacrificing OLAP capabilities.

However, the model lacks detailed performance comparisons against

specialized OLTP or OLAP databases.

8. Kambayashi et al., (2023) proposed a novel concurrency control protocol

named Shirakami, designed to handle both long and short transactions in

real-world workloads efficiently. Shirakami has two sub-protocols:

Shirakami-LTX for long transactions based on multi-version concurrency

control, and Shirakami-OCC for short transactions based on Silo. It

integrated these protocols using the write preservation method and epoch-

based synchronization. Shirakami-LTX exploited a larger scheduling space

(MVSR) than conflict serializability, reducing false positives and

introducing order forwarding to handle conflicting long transactions without

aborting. Shirakami-OCC is optimized for short transactions, retaining Silo's

performance. The model reduced false positives, concurrent processing of

long and short transactions and optimizations like read area declaration and

on-demand version order determination. Yet, evaluating Shirakami on real-

world benchmarks like BoM and telecommunication billing is not discussed

in the research.

9. Nguyen et al., (2023) proposed a novel approach called Fair Thread ID

(FairTID) for implementing transaction prioritization in real-time database

systems. The proposed FairTID methods assigned thread IDs as timestamps

to transactions, eliminating the need for a centralized counter. The model is

implemented and evaluated on FairTID in a 2-phase locking protocol,

maintaining the prioritization inherited from the Wound-Wait scheme. The

45

results show up to 1.5 times higher throughput, 1.6 times lower latency, and

a 1.67 times lower deadline-miss ratio compared to the baseline protocol.

However, the performance improvements were significant only when

contention levels were not high.

10. Guo et al., (2024) proposed a new architecture for data sharing among

heterogeneous blockchain using a cross-chain hub based on Trusted

Execution Environment (TEE). The model introduces a hybrid concurrency

control protocol to address performance variations among blockchain. It

deploys a cross-chain hub on a TEE-enabled server to link diverse

blockchain. A query-execute-commit mechanism ensures the isolation of

data and processing logic. To enhance data security and confidentiality, the

model implements key exchange and access control protocols. It proposes a

hybrid concurrency control protocol that utilizes optimistic control for high-

throughput blockchain and pessimistic control for low-throughput ones. The

system achieves reasonable throughput and scalability in cross-chain data

sharing, resulting in an execution time of 15798ms and conflict detection

time of 1.225ms. Yet, the model performance may be limited by the slowest

blockchain involved in data sharing.

2.2.4. Inferences from Literature Methods

Leveraging the strength and increasing performance in the concurrency control

techniques requires different transactional characteristics and workload patterns

along with a balance in allocating the resources, and maintaining the transactional

request. The review inferred that the concurrency control in a distributed database

environment combined with the optimization enhanced the performance and

robustness of the system. The limitations

1. Integrating the Multiple concurrency control mechanism without increasing

the complexity of the system is the primary challenge in hybrid concurrency

control.

2. Coordinating various approaches in a highly concurrent environment

increases the synchronization overhead and degrades the consistency.

3. The model adds to space complexity by storing multiple types of

information, including transaction status and details, within the system.

46

The proposed research primarily focuses on enhancing the hybrid concurrency

control methods within the DDB environment. The research progresses the hybrid

concurrency control methods in DDB by integrating hybrid methods and utilizing

nature-inspired search algorithms to effectively improve efficiency and mitigate

challenges encountered in the literature.

2.2.5. Research gaps

•Need to improve concurrency control algorithms in database systems, particularly

in centralized and distributed environments without degrading the performance of

the system.

•Existing concurrency control methods exhibit limitations such as high abort rates,

long execution times, and scalability issues.

•Lack of exploration of factors such as system load and dynamic environments in

evaluating the execution of concurrency control techniques.

•Limited investigation of the system load and complexity on the performance and

scalability of hybrid concurrency control techniques in distributed database

systems.

•Lack of research in the optimization of concurrency control protocols for dynamic

transaction processing environments, such as cloud databases, where workload

fluctuations and resource constraints are common challenges.

2.3. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS

Distributed concurrency control algorithms encompass a range of methods and

approaches utilized to handle concurrency in DDB systems. In distributed setups

where data is dispersed across various nodes or sites, preserving the ability for

transactions to operate simultaneously without causing conflicts and upholding the

integrity and consistency of the data. These algorithms are designed to facilitate the

coordination of access to shared data among transactions executing on disparate

nodes within the distributed system.

1. Distributed Locking:

In distributed environments, the concept of distributed locking builds upon

traditional locking mechanisms. It functions by acquiring and releasing locks on

data items distributed across multiple nodes to regulate concurrent transaction

access (Wang et al., 2017). The objective of distributed locking is to prevent

47

conflicting operations on the same data item, thereby ensuring that transactions can

proceed without interference from one another.

2. Timestamp Ordering:

Timestamp ordering is a method where each transaction receives a unique

Timestamp reflecting its initiation time. These timestamps are used to sequence

transactions, determining their order of execution (Yu et al., 2016). This method

ensures that transactions with conflicting operations are coordinated and executed

in a manner that upholds consistency within the database.

3. Optimistic Concurrency Control (OCC):

OCC enables transactions to progress without immediately locking data items.

Instead, it identifies conflicts during the commit phase by comparing the state of

the database when the transaction started with its state at the time of committing.

This approach is particularly effective in scenarios with minimal contention and

infrequent conflicts, making it well-suited for such environments.

4. Multi-Version Concurrency Control (MVCC):

MVCC is a method applied in database systems to enable simultaneous access by

multiple transactions. MVCC maintains multiple versions of these items without

locking the data items. Every transaction accesses a stable snapshot of the

database, ensuring isolation from other transactions (Ding et al., 2018). MVCC

grants each transaction its version of data items, thus eliminating the necessity for

locking, which reduces contention and enhances concurrency within the system.

5. Two-Phase Locking (2PL): 2PL, as an extension of the conventional phase

locking protocol, guarantees serializability by enforcing transactions to follow a

two-stage locking process. In the growing phase, transactions can acquire locks but

are not permitted to unleash them and in the shrinking phase, transactions can

unleash locks but are restricted from acquiring new ones. This mechanism ensures

that transactions retain all essential locks until either they commit or abort,

effectively preventing conflicts and upholding consistency throughout the process.

These algorithms help in managing concurrency in distributed database systems,

allowing transactions to execute concurrently while ensuring data consistency and

integrity across multiple nodes (pandey et al., 2018). Each algorithm has its

advantages and disadvantages, and the decision of the algorithm relies on factors

48

such as the system's architecture, workload characteristics, and performance

requirements.

2.4. STRUCTURE OF DISTRIBUTED TRANSACTIONS

The structure of distributed transactions denotes the organizational framework and

components involved in maintaining and managing transactions across multiple

nodes or sites in a distributed database environment. In DDBMS, synchronizing

concurrent user transactions poses the challenge of adapting both serializability

and concurrency control mechanisms to operate efficiently within a distributed

framework. Global serializability necessitates that the execution of transactions at

every site is seriable and the order in which the transactions are serialized across

all sites remains constant. The DDBMS protocols address the limitation of

restoring a failed site database to a consistent state. The protocols are designed to

handle the complexities of distributed environments, ensuring that the system can

recover and maintain data consistency across all the sites.

In DDBMS, each transaction originates from the master process (MP) which is

located in the site of origin. This MP then establishes a group of cohort processes

(COP) to perform the necessary processing tasks for executing the transaction.

DDBS query processing strategies prioritize accessing data at its local site rather

than a remote site. For each site where the transaction accesses data, there exists at

least one corresponding cohort process. DDBS implementations vary in their

approach to parallelism during query execution. When data is replicated across

sites, each cohort responsible for updating any data item is associated with one or

more update processes (UP) at other sites. In the distributed transactional system,

each cohort is equipped with an update process localized to remote sites where data

updates occur.

These update processes are utilized for maintaining concurrency control,

facilitating communication among themselves, and sharing updates during the

initial phase of the commit protocol. Upon completion of its designated query, a

cohort signals its execution completion to the master (Wei et al., 2015). After,

receiving receipt of such signals from all cohorts, the master initiates the commit

protocol by dispatching “prepare to commit messages” to all relevant sites. Upon

the decision to commit, a cohort notifies the master with a “prepare" message,

prompting the master to relay commit directives to each cohort post-receipt of

"prepared" messages from all cohorts. This protocol concludes with the master

receiving "committed" confirmations from all cohorts. However, if any cohort

49

encounters an inability to commit, it returns a "cannot commit" message during the

initial phase, prompting the master to transmit "abort" rather than "commit"

directives during the subsequent phase. The presence of replica update processes

renders the commit protocol a nested two-phase commit protocol. further

enhancing the system's resilience and efficiency.

Two-Phase Commit Protocol (2PC):

2PC is applied to ensure atomicity in distributed transactions. It has two distinct

phases namely the preparation phase and the commit phase. In the preparation

phase, the coordinator prompts each participant to prepare for committing the

transaction. After verifying readiness from all participants, the coordinator

advances to the commit phase, directing each participant to execute the

transactions commit (Gupta et al., 2018). If any participant encounters difficulty in

preparing or committing, the coordinator initiates a rollback process to maintain

transaction consistency, ensuring either a complete commit or abort across all

participants.

Recovery Mechanisms:

These mechanisms are used to handle failures that may arise during the transaction

processing. The mechanisms namely checkpoints, recovery managers and logging

are used for maintaining a system. This method ensures the system's integrity by

restoring the consistency state of the system and also ensures the durability of

committed transactions.

2.5. MODELING OF DDBMS

The model of DDBMS consists of six components which help enhance the

performance and ensure the properties of the data items (Grohmann et al., 2020).

1. Source: A source is employed to create and generate transactions concurrently

tracks the performance information and also maintains transactional integrity at the

site level.

2. Transaction Manager: this role involves receiving transactions from their

source and patterning their execution. It also checks how transactions are carried

out, including managing their behaviour throughout the execution process.

50

3. Concurrency Control Manager: It involves implementing concurrency

control algorithms.

4. Resource Manager: This is responsible for representing physical resources

such as CPUs, disks and files enabling operations such as writing to or accessing

data or messages from these resources. This additionally represents the

computational and I/O capabilities on each site. This structure additionally

represents the computational and input/output (I/O) capabilities of each site.

5. Network Manager: The network manager contains the representation of the

communication network model. It operates under the assumption of a LAN setup,

where the transmission time of messages over the network is considered minimal

or insignificant.

6. Sink: The sink manages the collection of statistics regarding completed

transactions.

51

Figure 2.5 illustrates the DDBMS model structure and the processes are explained.

Figure 2.5 Modeling of DDBMS

2.6 .CONCURRENCY CONTROL PROTOCOL FOR THE

DDBMS MODEL

Concurrency control protocol for DDBMS models encompasses a comprehensive

set of rules and mechanisms to manage concurrency, ensure data consistency, and

optimize performance in a distributed database environment. Figure 2.6 represents

the types of Concurrency control protocol

RESOURCE MANAGER

(Represents physical resources)

CONCURRENCY CONTROL

MANAGER
(Enforces concurrency control

algorithms)

Transa

ctions

NETWORK MANAGER

Services

TRANSACTION

MANAGER

(Load, Cohort

read/write, Abort,

Commit)

SINK

(Collects of

statistics

details of

completed

transactions)

SOURCE

(Creates and

Generates

transaction)

52

Figure 2.6 Concurrency control protocol

1. Lock based protocols

Lock-based protocols represent a category of strategies employed within database

management systems to regulate simultaneous access to shared data by multiple

transactions. Their primary aim is to guarantee that transactions obtain suitable

locks on data elements, to prevent conflicts and uphold data consistency. The lock-

based protocols are divided into two phase locking protocols which divided in to

Basic 2PL, Conservative 2PL, Strict 2PL and Rigorous 2PL

1.1 two phase locking protocols: divided in to

A. Basic two-phase locking protocol (Basic 2PL):

A transaction is considered to be a two-phase locking protocol when all locking

operations occur before any releasing operation. This protocol ensures

serializability in a centralized database when transactions run concurrently. It

operates under the assumption that a transaction can exist in only one of two

phases. It contains two phases namely Growing Phase and Shrinking Phase.

In the Growing Phase, a transaction is only permitted to acquire locks and is

blocked from releasing any lock (Pandey et al., 2018). Even if the transaction

CONCURRENCY CONTROL

PROTOCOLS

Lock based protocols Time Stamp based protocols

Graph based

protocols

Two Phase

Locking protocols
Time Stamp

ordering
Thomas’s

Write Rule
Multiversion

Time Stamp

Ordering

Basic Time

Stamp

ordering

Rigorous

2PL
Conservative

2PL
Basic

2PL
Strict Time

Stamp

ordering

Strict

2PL

53

completes its work with a locked data item, it is unable to release the lock during

this phase. The growing phase concludes when the transaction reaches the lock

point where the transaction has obtained all the locks it may potentially need.

Once the transaction reaches the lock point, it enters into the shrinking phase. In

the Shrinking Phase, the transaction is limited to releasing locks and cannot acquire

any new ones. The shrinking phase begins after the transaction releases its first

lock beyond the lock point. Subsequently, the transactions continue releasing all

locks it has acquired without the ability to acquire new ones.

Figure 2.7 represents the mechanism of the growing phase and shrinking phase in

basic 2PL concurrency control protocols.

Figure 2.7 Basic 2PL locking protocol

B. Conservative two-phase locking protocol (C2PL):

C2PL requires transactions to declare all the locks they need upfront. This

protocol acquires locks for all required items before a transaction begins

execution by declaring the read and write sets are examined. If any of the
elements in either the read or write set are already locked by other

transactions, the transaction waits until those locks are released. While

LOCK POINT

Growing

phase

Shrinking

phase

N
o

.
o

f
lo

ck
s

Start End

Acquire locks

Releasing

locks

54

this method is deadlock-free, it may not be feasible for a multi-user

distributed database environment due to significant delays.

C. Strict two-phase locking protocol (S2PL):

In S2PL a transaction retains its write locks until it either aborts or

commits, deadlock may still occur, but the protocol ensures recoverable

schedules. Under strict scheduling, a transaction cannot access a data item

that is locked until the last transaction that modified it either commits or

aborts. Figure 2.8 represents the Strict two-phase locking protocol (S2PL)

Figure 2.8 Strict two-phase locking protocols

D.Rigorous two-phase locking protocol (R2PL):

In the R2PL, locks are retained until a transaction either commits or

aborts. A transaction remains in its expanding phase throughout its

execution. Under this method, a transaction is prohibited from releasing

any lock, until it commits. Other transactions may acquire shared locks on

data items that the uncommitted transaction also holds shared locks,

however, they cannot acquire any lock on data items.

N
o

.
o

f
lo

ck
s

Start End

Acquire locks

Releasing

locks

Time of data item in use

Transaction

Duration

55

1.2 Graph-based protocols:
Graph-based protocols are employed within DBMS to identify and

prevent deadlocks between transactions. These protocols model the

transactions and their interactions as a graph structure (Arora et al., 2016).

In this representation, transactions are depicted as nodes, while conflicts

between transactions are represented as edges within the graph. In this

protocol, each transaction (T), can acquire an exclusive lock on data only

once and must follow the rules that are defined below:

First Lock (R1): including the root node, T can initially acquire a lock on

any data item.

Parent-Child Locking (R2): T can lock data (Q), only if it presently holds

a lock on Q's parent.

Unlocking Flexibility (R3): Data items may be unlocked at any point

during the transaction's execution.

Avoiding Re-Locking (R4): if data has previously been both locked and

unlocked by T. It is prohibited from acquiring a lock on that data item.

2. Timestamp-based protocols:

Timestamp-based protocols are utilized to maintain and manage

concurrent access to shared data by multiple transactions. The conflicts

that arise while accessing the concurrent are rectified by using these

Timestamp protocols.

2.1 Thomas's write rule:
This protocol is an extension of the timestamp ordering protocol and is

used to solve conflicts between write and read operations. The rule defines

that if a newer transaction has already recorded the value of an object, an

older transaction need not execute its write operation as it will eventually

be overwritten by the newer one. thomas's write rule, an enhancement of

the basic timestamp ordering algorithm, deviates from enforcing conflict

serializability but reduces the rejection of write operations by adjusting

the criteria for the write_item(I) operation in the following methods:

56

R1: If the timestamp of the latest read operation on Data Item I, denoted

as read_TS(I), is higher than the timestamp of transaction T (TS(T)), then

transaction T is aborted and rolled back, rejecting the operation.

R2: If the timestamp of the latest write operation on data item I, denoted

as write_TS(X), is higher than the timestamp of transaction T (TS(T)),

then the write operation of transaction T is not executed. However,

processing continues because another transaction with a higher timestamp

than TS (T) has already written the value of X. Therefore, the write

operation of T is considered out-dated.

R3: "If neither condition R1 nor condition R2 is met, the transaction T's

write operation on data item I is executed, and the write timestamp of I

(write_TS(I)) is assigned the timestamp of transaction T (TS(T)).

2.2 Multiversion timestamp ordering protocol:

Multiversion concurrency control represents an updated version of basic

timestamp ordering techniques aimed at enhancing database performance

in multiuser environments (Freitag et al., 2022). This algorithm preserves

previous values of a data item whenever an update occurs, effectively

maintaining a history of changes. In this approach, the system retains

several versions (X1, X2, …,Xn) of each data item I. Whenever a write

function is performed on I, a new version is generated. The data manager

maintains X, which contains a record of its versions and a history log of

the values assigned to X. During a read (I) operation, the scheduler not

only decides when to initiate the read request to the data manager but also

defines which version of I should be read. By using the write operation the

new version of X is created. The Multiversion is governed by two rules

R1: When transaction T attempts to write to data item X, the system

checks if there exists a version (i) of I with the high write timestamp

(write_TS) that is lower than or equal to T's timestamp (TS(T)). If such a

version exists and the read timestamp (read_TS) of version (i) is greater

than T's timestamp, T is aborted and rolled back. Otherwise, a new version

of I (xi) is created with its read timestamp set to T's timestamp, and its

write timestamp set to TS (T).

R2: When transaction T tries to read data I, the system finds version i of X

with the highest write timestamp that is lower than or equal to T's

timestamp. It then returns the value of version i to T and updates the read

57

timestamp of version i to the maximum of T's timestamp and the current

read timestamp of version. R2 ensures that a read operation will always be

successful and never rejected.

2.3 Time Stamp Ordering divied in to :

A.Basic Timestamp ordering protocol:

In the Timestamp ordering protocol, a unique Timestamp (TS) which

contains its start time is assigned to each transaction. The transactions are

ordered based on their timestamp. The transaction with the higher

Timestamp is considered to be the most recent or newer compared to the

transactions with lower timestamp (Yao et al., 2015). Transactions are

executed based on the timestamp, the transactions with the lower

timestamp (older transactions) are given priority than the transactions with

higher timestamp (newer transactions).

B. Strict time stamp ordering protocol:

The enhanced version of the basic timestamp ordering is called the strict

time stamp ordering protocol which guarantees schedules that are both

strict and serializable. It assures recoverability and conflict serializability.

In this protocol, when a transaction (T), executes a read_item (I) or

write_item (I) operation where Timestamp TS (T) > write_TS (I), the read

or write operation is postponed until the transaction responsible for

writing the value of I commits or aborts. The strict timestamp ordering

protocol effectively circumvents deadlock issues.

58

2.7 . CHAPTER SUMMARY

This chapter provides a comprehensive introduction to DDBMS along

with the concepts, characteristics and various types. It also delves into the

DTP fundamentals and ACID properties essential for maintaining data

integrity. This also explored concurrency control problems and strategies

within DDBMS, including optimistic and pessimistic concurrency control

methods. This reviewed recent and existing research works on DTP and

concurrency control methods, emphasizing hybrid concurrency control

approaches, while discussing their implications and limitations. The

following chapters discussed the model and methodologies developed in

this research to address and tackle the limitations and issues in the DDB

environment and discusses the design of concurrency control mechanisms

in DDBMS. It covers various distributed concurrency control algorithms

like distributed locking, timestamp ordering, optimistic concurrency

control, multi-version concurrency control, and two-phase locking

protocols. It explains the structure of distributed transactions, including

the roles of the master process, cohort processes, update processes, and

the two-phase commit protocol for ensuring atomicity. Recovery

mechanisms like checkpoints, recovery managers, and logging are also

mentioned. The modeling of a DDBMS is described, consisting of

components like sources, transaction managers, concurrency control

managers, resource managers, network managers, and sinks. The chapter

provides a detailed explanation of concurrency control protocols for

DDBMS models, categorized into lock-based protocols, graph-based

protocols, and timestamp-based protocols. The models involved in

designing and implementing effective concurrency control in distributed

database environments to ensure data consistency, integrity, and high

59

CHAPTER 3

HYBRID CONCURRENCY CONTROL TECHNIQUE FOR

TRANSACTION PROCESSING IN DISTRIBUTED

DATABASE SYSTEM

3.1 INTRODACTIN

A hybrid concurrency control method for transaction processing DDB systems is

introduced, combining neural networks with a bio-inspired optimization algorithm.

This method employs a Back Propagation Neural Network (BPNN) to manage

lock-granting decisions and resolve conflicts by determining the winning

transaction. To optimize the BPNN's performance, a metaheuristic optimization

method known as the Bear Smell Search Algorithm (BSSA) is utilized to fine-tune

its parameters. Historical data regarding transaction conflicts, resource contention,

and system performance metrics are used to train the BPNN, enabling it to learn

patterns and relationships between input parameters and concurrency control

decisions. The strength of the BPNN lies in its ability to handle complex, non-

linear relationships between input parameters and desired outputs. However, the

effectiveness of the BPNN is dependent upon the quality of its training and the

optimization of its parameters, such as weights and biases. By employing the

BSSA, the proposed method aims to optimize the BPNN's parameters to enhance

the accuracy and efficiency of concurrency control decisions.

3.2 HYBRID CONCURRENCY CONTROL MODEL FOR

TRANSACTION PROCESSING

A Hybrid Concurrency Control Technique for Transaction Processing integrates

both optimistic and pessimistic concurrency control methods to manage concurrent

access to data in a database system. This approach aims to combine the benefits of

both methods while mitigating their respective limitations.

The hybrid concurrency control technique combines elements of both optimistic

and pessimistic methods to optimize performance and ensure data consistency.

Transactions are initially executed optimistically, allowing them to proceed without

acquiring locks. During the execution phase, the system monitors for potential

conflicts using techniques such as validation checks or versioning mechanisms. If

60

conflicts are detected, the system switches to a pessimistic mode, where

transactions acquire locks on data items to prevent further conflicts. Once conflicts

are resolved and the transaction completes successfully, locks are released, and the

system reverts to optimistic mode for subsequent transactions. Figure 3.1

demonstrates the overall Block diagram for hybrid concurrency control.

Figure 3.1 Block diagram for hybrid concurrency control

Transactions start optimistically, allowing for high concurrency and throughput.

Validation checks are performed at the end of the transaction to detect conflicts. If

conflicts are detected, the system switches to a pessimistic mode, acquiring locks

to resolve conflicts and ensure consistency. Finally, transactions are committed or

rolled back based on the outcome of conflict resolution. This hybrid approach

combines the benefits of both optimistic and pessimistic concurrency control,

providing a flexible and adaptive solution for transaction processing in database

systems.

Hybrid Currency control

method

Optimisti

c
Pessimisti

c

Number of transactions

Commit or Rollback

Transactions

Begin transactions

Acquire Locks on Conflicting

Data items

Resolve Conflicts

61

3.3 BACK PROPAGATION NEURAL NETWORK (BPNN)

The Backpropagation model serves as a crucial tool for training Artificial Neural

Network (ANN) models, facilitating the learning process by adjusting weights to

minimize the difference between predicted and actual outputs. This technique is

integral to Multilayer feed-forward networks, commonly referred to as

Backpropagation Neural Networks (BPNN). These networks comprise an input

layer, a hidden layer, and an output layer, offering the capability to handle non-

linear problems effectively (Li et al., 2017). The BPNN operates through two main

phases: the forward pass and the backward pass. During the forward pass, data

traverses the network layer by layer, undergoing computation using weights,

biases, and activation functions. The resultant output is then evaluated against the

expected labels to calculate the loss function. In the subsequent backward pass, the

gradient of the loss function is figured utilising the chain rule of calculus,

alongside weights and biases. These gradients are propagated backwards through

the network, aiding in weight and bias adjustments to refine the model's

performance. The forward propagation of the signal is denoted as,

 (𝑠 𝑠 𝑠𝑛)
𝑇 (3.1)

Here, S is the signal transition from the input layer to the hidden layer

62

Figure 3.2 Architecture of the proposed model

By considering the neuron’s activation function and threshold, the output of the

neuron is determined to correspond to the layer structure. The output value hidden

layer R_n for a neuron is mathematically expressed as,

 𝑛 𝑎 (∑ 𝑤𝑚 𝑛𝑠𝑚 𝑛
𝑁
𝑚=) (3.2)

Where 𝑚 𝑎𝑛 𝑛 refers to the 𝑚𝑡𝑕𝑎𝑛 𝑛𝑡𝑕 neuron in the hidden layer, 𝑤𝑚 𝑛 refers

to the weight connection between the 𝑚𝑡𝑕𝑎𝑛 𝑛𝑡𝑕 neuron, 𝑛 refers to the

threshold in the 𝑛𝑡𝑕 neuron and 𝑎 refers to the activation function in the hidden

layer.

The output 𝑣𝑙 of the neuron in the output layer is denoted as,

𝑣𝑙 𝑎 (∑ 𝑞𝑙 𝑛ℎ𝑛 𝑚
𝑁
𝑛=) (3.3)

I

Input

Layer

Hidden Layer
Output

Layer

 Back propagation

layer

∑ F ()

W1

W3

Input

W2

Weights
Bias

Activation

Function

Output

Desired

Output

Optimization

Layer

63

Here, 𝑞𝑙 𝑛 represents the weight connection between the 𝑙𝑡𝑕 layer and 𝑛𝑡𝑕 neuron,

 𝑚 refers to the threshold in the 𝑚𝑡𝑕 neuron and 𝑎 refers to the activation

function in the output layer.

The error function in the forward propagation is defined as,

 ∑ (𝑣𝑙)

 𝐿
𝑙= (3.4)

Here, refers to the expected output. During the backpropagation to correct the

acquisition error the threshold value is corrected based on the weight and bias,

which is denoted as,

𝑣𝑙 𝑗 𝑣𝑙 𝑗 + ∆𝑣𝑙 𝑗

∆𝑣𝑙 𝑗 𝜏
𝜕𝐸

𝜕𝑣𝑙 𝑗
 𝜏

𝜕𝐸

𝜕𝑦𝑙
∗
𝜕𝑦𝑙

𝜕𝑣𝑙 𝑗
 𝜏(𝑙 𝑦𝑙)𝑦𝑙 (𝑦𝑙) 𝑛 (3.5)

The error correction in the output layer 𝑍𝑗 is denoted as,

𝑍𝑗 (𝑙 𝑦𝑙)𝑦𝑙 (𝑦𝑙) (3.6)

The correction error 𝑛 of each unit in the hidden layer can be denoted as

 𝑛 (∑ 𝑣𝑙 𝑗 ∗
𝐿
𝑙= 𝑍𝑗) 𝑛 (𝑛) (3.7)

The learning process of the BPNN revolves around the iterative transmission of

forward signals and the backpropagation of errors. The variation between the

observed and the predicted results is adjusted by weight and bias along with the

threshold values. To overcome the convergence and high volatility during the

training process, which leads to the local optimum, the model uses the BSSA

optimization algorithm. This algorithm is used to optimize and enhance the

performance.

64

3.4 BEAR SMELL SEARCH ALGORITHM (BSSA)

The BSSA draws inspiration from the foraging behaviour of bears, leveraging their

efficient strategies for locating and exploiting food sources. This algorithm mirrors

the remarkable olfactory capabilities of bears, enabling them to detect and track

smell over vast distances. By emulating the bear's ability to navigate toward

promising smell trails while exploring new territories, the BSSA iteratively

explores potential parameter configurations within a search space, guided by

principles such as exploitation of promising regions and exploration of new areas.

Assessing the quality of odors, particularly considering the interactions among

odorant components, poses a challenge for traditional methods but aligns

seamlessly with a bear's acute sense of smell (Ghasemi-Marzbali 2020). Bears

possess an exceptionally large olfactory bulb, setting them apart from other species

and amplifying their olfactory prowess. This enlarged olfactory bulb acts as a

crucial receptor for detecting odors and transmitting sensory information through

the olfactory tract to the brain.

This model aims to compute the glomerular activity relationship among odor

components provided as inputs. Essentially, it generates similarity indices between

received odors. It calculates similarity measures between the odors detected. Based

on these similarity values, bears can determine their next movement direction. The

BSSA relies on the bear's olfactory senses to perceive diverse scents in its

surroundings. Each scent serves as a directional cue for movement, as every

element within the environment emits a unique odor, guiding the bear's navigation.

The distinct odor for the craved food is the final optimal solution. Let 𝑖

,𝑜 𝑖
 𝑜 𝑖

 𝑜 𝑖
𝑗
 𝑜 𝑖

𝑘 - be the 𝑡𝑕 odor received with molecules/components.

The bear receives 𝑛 breathing odors, so the solution of breathing odors is

initialized in a matrix , 𝑖-𝑛 𝑘 [𝑜 𝑖
𝑗
]
𝑛 𝑘

 format, which is given by,

[

𝑜
𝑜
⋮
𝑜 𝑖
⋮
𝑜 𝑛]

𝑛 𝑘

[

 𝑜

 𝑜
 ⋯

𝑜
 𝑜

 ⋯
⋮
𝑜 𝑖

⋮
𝑜 𝑛

⋮
𝑜 𝑖

⋮
𝑜 𝑛

⋱
⋯
⋱
⋯

𝑜
𝑗
⋯ 𝑜

𝑘

𝑜
𝑗
⋯ 𝑜

𝑘

⋮

𝑜 𝑖
𝑗

⋮

𝑜 𝑛
𝑗

⋱
⋯
⋱
⋯

⋮
𝑜 𝑖
𝑘

⋮
𝑜 𝑛
𝑘
]

𝑛 𝑘

 (3.8)

65

Here, 𝑖 contains the components such as smell from trees, animals and various

other environmental factors. The animal carcass smell is considered to be the target

smell for the bears and 𝑜 𝑖
𝑗
 is the 𝑗𝑡𝑕 components of 𝑡𝑕 odor.

In accordance with the breathing function and glomerular layer process in the sniff

cycle, 𝑖
𝑗
 represents the 𝑗𝑡𝑕 odor components in the 𝑡𝑕 odor. This can be

mathematically represented as

 𝑖
𝑗
 {

 𝑖 (𝑇 𝑇𝑖𝑛𝑕 𝑙𝑒) + 𝑖
𝑇𝑖𝑛ℎ𝑎𝑙𝑒 𝑇𝑖𝑛𝑕 𝑙𝑒 ≤ 𝑇 ≤ 𝑇𝑒𝑥𝑕 𝑙𝑒

 𝑖
𝑇𝑒𝑥ℎ𝑎𝑙𝑒 exp .

𝑇𝑒𝑥ℎ𝑎𝑙𝑒−𝑇

𝛾𝑒𝑥ℎ𝑎𝑙𝑒
/ 𝑇𝑒𝑥𝑕 𝑙𝑒 ≤ 𝑇

 (3.9)

Here, 𝑇𝑖𝑛𝑕 𝑙𝑒 𝑇𝑒𝑥𝑕 𝑙𝑒 are the inhalation time and exhalation time and 𝑒𝑥𝑕 𝑙𝑒

represents the constant value for exhalation time. The complete breathing cycle

remains constant, which either matches the length of variable or the length of the

 𝑡𝑕odor. Based on the timing of inhalation and exhalation, the odor components are

separated into two different groups.

The receptor's sensitivities, identity and odor absorption are combined for the 𝑡𝑕

mitral. When 𝑖
𝑗
 0, this indicates that there is no odor identified by the

olfactory epithelium, before the next inhalation. The value of is calculated as,

 𝑖(𝑖)

𝑘
 ∑ (𝑜 𝑖

𝑗
) (𝑜 𝑖

𝑗
) {

 𝜗 ≤ 𝑜 𝑖
𝑗

0 𝜗 > 𝑜 𝑖
𝑗

 𝑘

𝑗= (3.10)

Here, 𝜗 refers to the threshold value which is based on average odor information

from sets and refers to the odor length in 𝑡𝑕odor. The collected information is

sent to the granular layers and mitral to find the optimal odor. These formulations

replicate the neural dynamics observed in the granular and mitral layers.

 ̇ 𝑦(𝑌) 𝑥 + ∑ 𝑥() + (3.11)

𝑌 𝑥() 𝑦𝑌 + ̇ (3.12)

Here, *𝑥 𝑥 𝑥𝑛+ , and 𝑌 𝑦 𝑦 𝑦𝑛 are the activities of granular

and mitral cells, * 𝑠 𝑠 𝑠𝑛+ represents the external inputs to the

mitral cells, * 𝑠 𝑠 𝑠 𝑛+ refers to the central input to granule

cells, 𝑥() * 𝑥(𝑥) 𝑥(𝑥) 𝑥(𝑥𝑛)+ refers outputs of the mitral cells and

 𝑦(𝑌) { 𝑦(𝑦) 𝑦(𝑦) 𝑦(𝑦𝑛)} refers to the output of the granule cells,

66

 𝑥 𝑎𝑛 𝑦 are the constant values of mitral and granule cells and the constant

value is set as 0.14, 0.29 and 𝑥 𝑎𝑛 𝑦 refers to the function which stimulates the

output for the mitral and granule cells. The value 𝑥(𝑥) 𝑎𝑛 𝑦(𝑦) are formulated

with the constant value and formulated as

 𝑥(𝑥) {
0 4 + 0 4 tanh .

𝑥− 𝜗

 4
/ 𝑥 < 𝜗

0 4 + 4 tanh .
𝑥− 𝜗

 4
/ 𝑥 ≥ 𝜗

 (3.13)

 𝑦(𝑦) {
0 29 + 0 29 tanh .

𝑥− 𝜗

 9
/ 𝑥 < 𝜗

0 29 + 2 9 tanh .
𝑥− 𝜗

 9
/ 𝑥 ≥ 𝜗

 (3.14)

In the equation (3.13) and (3.14), the values of 𝑎𝑛 refers relationship

between the granular and mitral cells with the synaptic-strength connection

matrixes. This is calculated as,

 𝑖
𝑗 {

𝑟 𝑛𝑑()

𝐶ℎ
 0 < 𝑖

𝑗
< 𝑕

0 𝑕 < 𝑖
𝑗

 (3.15)

 𝑖
𝑗 {

𝑟 𝑛𝑑()

𝐶𝑤
 0 < 𝑖

𝑗
< 𝑤

0 𝑤 < 𝑖
𝑗

 (3.16)

 𝑖
𝑗 {

𝑟 𝑛𝑑()

𝐶𝑙
 0 < 𝑖

𝑗
< 𝑙

0 𝑙 < 𝑖
𝑗

 (3.17)

Where, 𝑙 𝑕 𝑎𝑛 𝑤 are connection constants, 𝑟𝑎𝑛 () refers to the random value

ranges between [0, 1] and 𝑖
𝑗
 indicates the space between 𝑡𝑕 and 𝑔𝑡𝑕 odors based

on their data, where 𝑔𝑡𝑕 odor is considered to be the desired smell (Global

solution), which indicates the distance between the local solution (representing

each odor) and the global solution (representing the target scent).

The optimization process integrates a mechanism by using the global solution to

ensure and enhance the exploitation. When all the information is gathered from the

activity and sent to the brain by neurons, the separation process starts based on the

dissimilarity assessment. This dissimilarity process is done based on the Pearson

correlation, which helps the bear to move to the next position based on the odor.

67

The factors used are probability odor components (POC), probability odor fitness

(POF) and odor fitness (OF) which are formulated as,

𝑂𝑖

max(𝑂𝑖)
 (3.18)

𝑂𝐹𝑖

max(𝑂𝐹𝑖)
 (3.19)

The dissimilarity between two odors can be determined through calculations using

expected odor fitness (EOF) and distance odor components (DOC) formulations as

outlined below:

 𝑖
∑ (𝑃𝑂𝐶𝑗

1− 𝑃𝑂𝐶𝑗
2)𝑘

𝑖=1

√∑ .𝑃𝑂𝐶𝑗
1− 𝑃𝑂𝐶𝑗

2 /
2

𝑘
𝑖=1

 (3.20)

 𝑖 | 𝑖
𝑔| (3.21)

The equations provided describe the potential movements within the algorithm.

Essentially, these formulas elucidate the connection between odors and how they

guide candidates toward the desired positions. The method demonstrates that the

outputs of the brain determine an appropriate direction for the next position. Within

each region of the grid, the distances between all odors are computed using two

thresholds, denoted as and . Consequently, the subsequent odors can be

computed as follows:

 𝑘+

 {
 𝑖 𝑘 𝑟𝑎𝑛 𝑖 (𝑘 𝑏𝑒𝑠𝑡) 𝑖 ≤ 𝑎𝑛 𝑖 ≤

 3 𝑖 𝑘 𝑟𝑎𝑛 4 𝑖 (𝑘 𝑏𝑒𝑠𝑡) 𝑜𝑡ℎ 𝑟𝑤 𝑠

(3.22)

 𝑖 𝑖
 − 𝐷𝑂𝐶𝑖

 1
 𝑖 𝑖

 − 𝐷𝑂𝐶𝑖

 2
 (3.23)

 3 𝑖 𝑖
 − 𝐷𝑂𝐶𝑖

 1
 4 𝑖 𝑖

 − 𝐷𝑂𝐶𝑖

 2
 (3.24)

68

ALGORITHM FOR BSSA

1. The parameters are initialized: no. of population, maximum iterations

(𝑡 𝑟𝑚 𝑥)

2. The population is generated with dimension in search space.

3. The fitness value for each row matrix () is evaluated.

4. The current global solution 𝑔 from the best odor is saved.

5. For iteration = ∶ 𝑡 𝑟𝑚 𝑥

a. The maximum output for the glomerular activity () is calculated

by using Eq. (3.10) & (3.11)

b. The DS value based on breathing function is attained by using Eq.

(3.9)

c. The values of 𝑥(𝑥) 𝑎𝑛 𝑦(𝑦) are calculated as the cell function

output using Eq. (3.13) and (3.14).

d. The values of 𝑎𝑛 are calculated using Eq. (3.15)-(3.17)

and solve Eq. (3.11)-(3.12)

e. The vectors , and are defined using the Eq. (3.11)-(3.12)

f. The vectors and are calculated using Eq. (3.18)-(3.19)

g. The thresholds to calculate the distance between the odors are set as

 and

h. To calculate the distance, the coefficient 𝑡𝑜 4 values are

calculated,

i For : 𝑛

i. If 𝑖 ≤ 𝑎𝑛 𝑖 ≤ then

1. Generate the population using Eq. (3.23)

ii. Else

1. Generate the population using Eq. (3.24)

iii. End

69

j. End for

6. Print the global outputs

7. End for

Figure 3.3 Graphical view of the olfactory system, since the direction of odors

toward bear is important; therefore, only these types of odors are drawn but in real-

world these odors released in all directions (Ghasemi-Marzbali 2020).

Figure 3.3 Graphical view of the olfactory system

70

3.5. BPNN-BAAS-BASED HYBRID CONCURRENCY CONTROL

MODEL

The proposed BPNN-BSSN aims to increase accuracy and efficiency. The BPNN

is used to lock and manage the lock decisions, along with resolving conflicts. This

also helps in recognizing successful transactions. The parameters of BPNN are

fine-tuned by utilizing BSSA. The BSSA is used to optimize transaction conflicts,

resource contention, and system performance metrics based on the transaction

history. The advantage of BPNN includes handling intricate and non-linear

relations between inputs and output. By fine-tuning the weight and bias parameters

the efficiency and the performance of the model is increased. The BSSA is enlisted

to optimize these parameters, aiming to discover the optimal set that enhances the

accuracy and efficacy of concurrency control decisions. Figure 3.4 demonstrates

the flowchart for the proposed BPNN-BSSA model.

Figure 3.4 Block diagram for the proposed BPNN-BSSA model

For each transaction in the database, a distinct identifier is assigned to ensure the

effectiveness and manageability of concurrency control techniques within the

database. In this model, the database designates the transaction_id as the unique

identifier. Each object within the database operates in two versions: the committed

version, indicating successful execution and commitment, referred to as the old

version, and the uncommitted version, denoting on-going execution, known as the
new version. If objects from a transaction possess only one version and remain

Backpropagation Neural Network

 Optimistic Pessimistic

Number of transactions

Locking system based on conflict rate

Parameters optimization using

BSSA

Transactional performance evaluation

71

unchanged for an extended period, they are considered inactive and are kept within

hidden transactions. These hidden transactions persist until the transaction's writing

process is finalized and committed.

 The database system maintains records of all objects, including both

committed and uncommitted transactions, as well as on-going transactions that

have interacted with these objects through reads or writes without committing.

Consequently, read or write locks are enforced on these objects. Whenever a

transaction executes a write operation on an object, a new version of that object is

generated. This new version persists until the transaction is committed. Upon

completion of the transaction and satisfaction of all conditions, the previous

version of the object is replaced. To manage conflict resolution, transactions

maintain two lists, referred to as list1 and list2, which serve the purposes of

sequential execution and deadlock detection, respectively.

When a conflict of type read-write (rw) occurs, where one transaction reads an

object that another transaction writes a new version of, the following actions are

taken:

The conflicting transaction Transaction1 is added to list1 of Transaction2 with

Type = R.

Transaction2 is added to list2 of Transaction1 with Type = R.

In the case of a write-read (wr) conflict:

Transaction1 is added to list1 of Transaction2 with Type = W.

Transaction2 is added to list2 of Transaction1 with Type = W.

The commitment of Transaction 2 is postponed until the transactions in list 1 of

Transaction 2 are completed. Transactions in list2 of Transaction1, with types W/R,

simply await the termination of Transaction1. However, transactions of type-write

in the list2 of Transaction1 are dependent on the result of Transaction1. If

Transaction 1 aborts, these transactions should also be aborted. The proposed

algorithm considers transaction states as Ready, Waiting, and Commit.

The optimistic method outperforms the pessimistic method when conflict

occurrences are infrequent. Determining the appropriate method for different

scenarios requires calculating the conflict rate, which is influenced by the time

frame within the database. A proposed algorithm dynamically selects between

pessimistic and optimistic concurrency control approaches based on observed

72

conflict rates over time. Monitoring the number of transactions and conflicts within

a specific timeframe is crucial. Two buffers are employed: one records transaction

inputs, while the other logs transaction commands between conflicts. This

systematic approach facilitates the tracking of transaction and conflict counts in

each cell.

To determine and adopt optimistic and pessimistic the proposed model relies on

conflict rate parameters defined as

𝑁𝑐

𝑁𝑖
 (3.26)

Here, is the conflict rate parameter, is the number of conflicts in a certain

timeframe and 𝑖 number of input transactions in a certain timeframe.

If decision-making via the RS/WS is not feasible, the determination relies on the

conflict rate and it is compared to the threshold value. After the committed

transaction from the BPPNN model, the model uses the conflict rate value to

determine the approach between optimistic and pessimistic. To determine the

locking system the threshold value is set based on the conflict, in this stimulation

the threshold value is set as 0.8. If the conflict rate is less than the threshold value

(< 0 8) then the optimistic approach is selected, whereas if the conflict rate is

greater than a threshold value (> 0 8) then the pessimistic approach is

determined.

By combining the backpropagation algorithm with the BSSA, the training process

of the neural network can potentially be optimized more effectively, by using the

parameters Throughput (TP), Conflict rate (CR), Execution time (ET) and CPU

time (CT).

 𝑇 + + 𝑇 + 𝑇 (3.27)

Here, 𝑎𝑛 are the random weight vectors along with the parameters

Throughput (TP), Conflict rate (CR), Execution time (ET) and CPU time (CT).

By optimizing the parameters the model leads to better performance and faster

convergence. The BSSA helps explore the search space more efficiently and find

the optimal combination of weights and biases that minimize the error function.

Figure 3.5 illustrates the flowchart of the hybrid concurrency control model.

73

Figure 3.5 Flowchart of the hybrid concurrency control model

Yes

User

Transaction

Assigning each transaction

Transaction manager

𝑇

𝑇𝑛

Transaction Queue

.

.

Check for Transaction priority

Have conflicts

occurred in pervious

transaction

Are

Conflicts

known?

No Yes

No
No

Yes

Use RS & WS

for decision

making
Use conflict

rate to find

method

Detect inputs

using BPNN

Does

information

is desired

output Check for threshold

values
Use BSSA to update

weight and bias

BSSA output for

decision making

Use output for

decision making

𝐸 < 0 8

Use pessimistic

method
Use optimistic

method

Based on output,

performance of the

parameters are analyzed

From output

are RS &

WS known?

Yes No

74

Algorithm for proposed model BPNN-BSSA

1. Start

2. Initialize parameters: Number of populations, maximum iterations

3. Generate population in the search space

4. Evaluate the fitness value for each row matrix

5. Save current global solution

6. For each iteration: Calculate maximum output for glomerular activity

(MG)

7. Calculate DS value based on breathing function

8. Calculate values of activation functions 𝑥(𝑥) 𝑎𝑛 𝑦(𝑦)

9. Calculate 𝑎𝑛

10. Calculate vectors 𝑎𝑛

11. Calculate vectors 𝑎𝑛

12. Set thresholds for distance calculations

13. Calculate coefficients (C1 to C4)

14. Generate populations based on odor dissimilarity

15. Update global outputs

Optimistic vs. Pessimistic Approach Determination:

16. Calculate conflict rate parameter (E) using Equation (3.26)

17. If decision-making using RS/WS is not possible, base the decision on the

conflict rate

a. Determine a locking system based on conflict rate and threshold value

b. Compare E with a threshold value (0.8)

c. If < 0 8:

i. Select optimistic approach

d. Else > 0 8:

75

i. Select pessimistic approach

e. End if

Concurrency Control Model and Transaction Processing:

f. Set a unique key for each transaction (transaction_id)

g. Maintain versions of objects: committed (old version) and

uncommitted (new version)

h. Handle read-write (rw) conflicts and write-read (wr) conflicts

i. Manage transaction states: Ready, Waiting, Commit

18. End if

19. Parameters are fine-tuned

20. Performance is analysed

21. End for

22. Stop

The proposed hybrid concurrency control model exploits the benefit of the BPNN

and BSSA to ensure and enhance the efficiency, accuracy and performance of the

database concurrency control model. The BPNN-BSSA model is employed for

lock management, conflict resolution and transaction recognition along with the

parameters optimization with the BSSA optimization.

3.6.IMPLEMENTATION

The banking simulation system comprises three interfaces: the ATM (Automate

Tellar Machine)form, the Customer form, and the Employee form. These forms are

designed to replicate real ATM processes. Integration with a database facilitates

transaction management, while CSV file handling manages transaction data input.

The banking system follows an object-oriented structure, featuring diverse

functionalities. An ATM number is randomly generated to populate the

corresponding ATM field. A constraint ensures withdrawal amounts are limited to

10,000; which is the permissible amount for stimulation. If any withdrawal amount

exceeds the limit, the system triggers a warning message. The code validates

withdrawal amounts, prompting the warning if necessary. Action listeners for

update and cancel operations manage ATM transactions, involving retrieval of the

76

ATM number and withdrawal amount. Transaction details, including withdrawn

amounts, total balances, and transaction status containing the success or failure, are

updated in the database.

(a) ATM Form

(b) ATM database

Figure 3.6 ATM interface

The customer form integrates design and operational elements for both database

and user interface tasks. This model ensures to creation of an interface optimized

for user interaction with transaction and account details. Customer form gathers

and retains customer transaction information such as credit or debit activities,

current balance, and transaction status. Upon connection to the database, it

authenticates the customer ID and retrieves the current balance. Subsequently, the

balance is computed based on the selected credit or debit option and the entered

amount. In cases where the resulting balance would be negative, it alerts the user

about insufficient balance. Transaction updates are then executed within the

database if the translation update fails; this promotes the display of an error

message. Database contents include customer ID, transaction ID, credit or debit

details, transaction amount, and current balance. This represents the structure and

functionality of the database and user interface, encompassing customer

transaction management, validation procedures, database interactions, and error

resolution. Additionally, it creates a user-friendly environment conducive to

diverse transaction-related operations. Figure 3.7 represents the Customer Interface

which includes the customer form and customer database.

77

(a) Customer Form

(b) Customer database

Figure 3.7 Customer Interface

The employee application's functionalities and methods, encompassing database

operations and user interactions, are outlined within the employee form or

interface. These methods serve to establish connections, execute queries, and

manage the creation and updating of employee details, including comprehensive

exception handling. The application incorporates functionality to manage aborted

transactions and retrieve relevant data. Within the employee form, essential fields

such as employee ID, customer ID, services, tasks, amounts, and transaction details

are present, covering outcomes like success, failure, and aborted transactions. All

acquired details are securely stored within the database for future reference and

processing. Figure 3.8 represents the Employee Interface which includes Employee

form and Employee database.

(a) Employee form

(b) Employee Database

Figure 3.8 Employee interface

78

3.7. CHAPTER SUMMARY

The chapter discussed a novel hybrid concurrency control technique for transaction

processing in distributed database systems. It combines a BPNN with a bio-

inspired optimization algorithm BSSA. The BPNN is used to manage lock-granting

decisions, resolve conflicts and recognize successful transactions. The BSSA is

employed to optimize the BPNN's parameters like weights and biases to enhance

its accuracy and efficiency. The hybrid technique aims to combine the benefits of

optimistic and pessimistic concurrency control methods. It uses a conflict rate

parameter to dynamically select between the two approaches based on observed

conflict rates over time. The proposed model maintains multiple versions of

database objects, handles read-write and write-read conflicts through transaction

lists, and manages transaction states like Ready, Waiting, and Commit. An

implementation is described as involving an ATM simulation system with

interfaces for ATM, customer, and employee transactions integrated with a

database for transaction management.

79

CHAPTER 4

RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

The experiments were carried out using Netbeans IDE (version 17), SQL

workbench 8.0 and JDK 20 on an Intel Core i5 processor with a CPU frequency of

1.8GHz, 8GB RAM, and the Windows 10 operating system. There are a total of

500 customer details which are stored in the database along with the ATM details

and the Employee details are stored in the SQL workbench database. Once the

transaction begins the other information including the type of transaction and the

success or failure of the transaction is also stored in the workbench database.

To evaluate the performance based on the reliability and efficiency of transaction

processing systems for various numbers of transactions the evaluation metrics are

utilized. Metrics like MSE, Throughput (Mbps), Conflict Ratio, Failure Ratio,

Execution Time (s) and CPU Utilization are used for performance evaluation.

MSE (Mean Squared Error) is a measure of the average squared difference

between actual and predicted values.

𝑁
 ∑ (𝑦̂𝑖 𝑦𝑖)

 𝑁
𝐼= (4.1)

Here, is the number of samples, 𝑦𝑖 is the actual value and 𝑦̂𝑖 is the predicted

value.

Throughput measures the rate at which data is successfully transmitted over a

network in megabits per second (Mbps).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
𝑇𝑜𝑡 𝑙 𝐷 𝑡 𝑇𝑟 𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑇𝑖𝑚𝑒 𝑇 𝑘𝑒𝑛
 (4.2)

Conflict ratio represents the ratio of conflicts to total transactions.

 𝑜𝑛 𝑙 𝑡 𝑎𝑡 𝑜
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑓𝑙𝑖 𝑡𝑠

𝑇𝑜𝑡 𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟 𝑛𝑠 𝑡𝑖𝑜𝑛𝑠
 (4.3)

The failure ratio indicates the ratio of failed transactions to total transactions.

 𝑎 𝑙𝑢𝑟 𝑎𝑡 𝑜
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹 𝑖𝑙𝑒𝑑 𝑇𝑟 𝑛𝑠 𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡 𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟 𝑛𝑠 𝑡𝑖𝑜𝑛𝑠
 ` (4.4)

80

Execution time measures the time taken to complete a task or process in seconds.

 𝑥 𝑢𝑡 𝑜𝑛 𝑡 𝑚 𝐼 𝐼 𝑇 (4.5)

Here, IC – Instruction count, CPI – clock period instruction and T – Clock period

CPU utilization represents the percentage of time the CPU spends executing

instructions.

 𝑈 𝑈𝑡 𝑙 𝑧𝑎𝑡 𝑜𝑛
 𝑇𝑜𝑡 𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡 𝑙 𝐸𝑙 𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒
 00% (4.6)

4.2 PERFORMANCE RESULTS

The performances are evaluated under 25, 50, 75 and 100 Transactions. The MSE

values fluctuate across different transaction levels. The values of throughput

increase with the increase in number of transactions. The conflict ratio and failure

ratio are relatively stable in different transaction levels, this indicates the system

performance is consistent in terms of transaction failure handling and conflict

resolution. The CPU utilization indicates that the system used consistent resource

usage in various transaction levels. The execution time remains within the closed

range with some variability. The performance metrics show that the system

maintains stable performance across different transaction levels, with throughput

and execution time being the most directly influenced by transaction volume.

Table 4.1 Performance metrics for a system under various numbers of transactions.

No. of

transaction

MSE Throughput

(Mbps)

Conflict

Ratio

Failure

Ratio

Execution

Time (s)

CPU

Utilization

25 0.0000029707 3.355 0.4 0.04 88.402 11.67

50 0.0000002948 3.6909 0.44 0.06 99.653 11.71

75 0.0000052466 3.355 0.4 0.054 86.453 11.572

100 0.0000027564 3.523 0.42 0.05 97.475 11.56

81

 Table 4.2 Comparative analysis of performance metrics with existing methods

Models/

Methods

MSE Throughput

(Mbps)

Conflict

Ratio

Failure

Ratio

HCC-MGSA-ART 0.00000376 2.174 0.98 0.71

HBOCC 0.00000369 1.365 1.67 0.4

SAOL –LRCD 0.00000389 2.479 1.20 0.45

RDMA-RCC 0.00000345 1.437 1.47 0.5

TCC –TDG 0.00000387 1.987 1.04 0.3

ES2PL 0.00000356 2.637 1.12 0.17

MCSI-NVM 0.00000373 1.40 1.11 0.2

DPC2-CD 0.00000312 3.026 1.30 0.7

RDMA-2PL 0.00000319 1.759 1.23 0.6

RDMA 0.00000343 2.6126 1.21 0.9

TEE –BCCH 0.00000367 1.427 1.29 0.1

Proposed model

BPNN-BSSA

0.00000275 3.523 0.42 0.05

Table 4.2 provides a comparative analysis of performance metrics among various

existing models with the proposed model BPNN-BSSA. The proposed model

significantly outperforms all other models. In terms of MSE, the values decrease

from the range 0.0000949436 to 0.0000331564, throughput increases with the

range from 3.158 to 0.114, Conflict ratio decreases from range 0.62 to 3.158 and

failure ratio decreases with the range from 0.15 to 0.85. The proposed model

BPNN-BSSA demonstrates a superior performance in terms of accuracy, Lower

conflict and failure rate along higher throughput, when compared to other models.

This indicates that the model has higher accuracy for prediction, better

synchronization, coordination and reliability. The overall performance of the model

indicates its effectiveness.

82

Figure 4.1 Comparison of MSE between BPNN-BSSA with other approaches

Figure 4.1 illustrates the comparative analysis between the proposed BPNN-BSSA

and existing approaches. The BPNN-BSSA model has a lower MSE value when

compared to other models. The MSE value of proposed BPNN-BSSA is

0.00000275, and it is 0.00000101, 0.00000094, 0.00000114, 0.0000007,

0.00000112, 0.00000081, 0.00000098, 0.00000037, 0.00000044, 0.00000068,

0.00000092, higher than HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-

RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and

TEE –BCCH methods.

0

0.000001

0.000002

0.000003

0.000004

0.000005

MSE

Comparison of MSE between BPNN-BSSA

with other approaches

HCC-MGSA-ART HBOCC
SAOL –LRCD RDMA-RCC
TCC –TDG ES2PL
MCSI-NVM DPC2-CD
RDMA-2PL RDMA

TEE –BCCH Proposed model BPNN-BSSA

83

Figure 4.2 Comparison of Throughput between BPNN-BSSA with other approaches

Figure 4.2 illustrates the comparative analysis of throughput between the proposed

BPNN-BSSA and existing approaches. The BPNN-BSSA model has a higher

throughput value when compared to other models. The throughput values of the

proposed BPNN-BSSA is 3.523 Mbps, and it is 1.349mbps, 2.158mbps, 1.044

Mbps, 2.086 Mbps, 1.536 Mbps, 0.886 Mbps, 2.123 Mbps, 0.497 Mbps, 1.764

Mbps, 0.9114 Mbps, 2.096 Mbps, lower than HCC-MGSA-ART, HBOCC, SAOL

–LRCD, RDMA-RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-

2PL, RDMA and TEE –BCCH methods.

0

0.5

1

1.5

2

2.5

3

3.5

4

Throughput (Mbps)

Comparison of Throughput between BPNN-

BSSA with other approaches

HCC-MGSA-ART HBOCC

SAOL –LRCD RDMA-RCC
TCC –TDG ES2PL
MCSI-NVM DPC2-CD
RDMA-2PL RDMA
TEE –BCCH Proposed model BPNN-BSSA

84

Figure 4.3 Comparison of Conflict Ratio between BPNN-BSSA with other approaches

Figure 4.3 illustrates the comparative analysis of the conflict ratio between the

proposed BPNN-BSSA and existing approaches. The BPNN-BSSA model has a

lower conflict ratio when compared to other models. The conflict ratio of the

proposed BPNN-BSSA is 0.42, and it is 0.56, 1.25, 0.78, 1.05, 0.62, 0.70, 0.69,

0.88, 0.81, 0.79, 0.87, higher than HCC-MGSA-ART, HBOCC, SAOL –LRCD,

RDMA-RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA

and TEE –BCCH methods.

0

0.5

1

1.5

2

Conflict Ratio

Comparison of Conflict Ratio between BPNN-

BSSA with other approaches

HCC-MGSA-ART HBOCC

SAOL –LRCD RDMA-RCC
TCC –TDG ES2PL
MCSI-NVM DPC2-CD
RDMA-2PL RDMA
TEE –BCCH Proposed model BPNN-BSSA

85

Figure 4.4 Comparison of Failure Ratio between BPNN-BSSA with other approaches

Figure 4.4 illustrates the comparative analysis of the failure ratio between the

proposed BPNN-BSSA and existing approaches. The BPNN-BSSA model has a

lower failure ratio when compared to other models. The failure ratio of proposed

BPNN-BSSA is 0.05, and it is 0.66, 0.35, 0.4, 0.45, 0.25, 0.12, 0.15, 0.65, 0.55,

0.85, 0.05 higher than HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-RCC,

TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and TEE –

BCCH methods.

The BPNN-BSSA model exhibits superior performance in terms of MSE, with

significantly lower values compared to other models. It also demonstrates higher

throughput for faster data processing capabilities compared to other models. In

terms of conflict ratio and failure ratio, the BPNN-BSSA model surpasses other

models by maintaining lower values, indicating better synchronization,

coordination, and system reliability.

0

0.2

0.4

0.6

0.8

1

Failure Ratio

Comparison of Failure Ratio between BPNN-

BSSA with other approaches

HCC-MGSA-ART HBOCC

SAOL –LRCD RDMA-RCC
TCC –TDG ES2PL
MCSI-NVM DPC2-CD
RDMA-2PL RDMA
TEE –BCCH Proposed model BPNN-BSSA

86

4.3 DISCUSSION OF RESULTS

The hybrid concurrency control model integrates the advantages of the pessimistic

and optimistic approach for transaction processing in a distributed environment.

The model is evaluated on various metrics like MSE, Conflict ratio, failure ratio,

Throughput, CPU utilization and execution time. The performance is evaluated

across varying transaction volumes, including 25, 50, 75, and 100 transactions of

the system. MSE value fluctuates across different transaction counts, indicating

varying degrees of accuracy in predicting outcomes. The MSE values range from

0.0000002948 to 0.0000052466, with relatively low prediction errors overall

transaction. Throughput, measured in Mbps (Megabits per second), we observe a

consistent trend of increasing throughput with a higher number of transactions.

This indicates that the system can transmit data at a higher rate as the workload

intensifies. The conflict and failure ratios remain relatively stable across different

transaction counts, indicating consistent performance in managing conflicts and

transaction failures. There is a slight variation in execution time, with values

ranging from 0.04 to 0.054 seconds, indicating minor fluctuations in the time taken

to complete transactions. CPU utilization remains relatively high, consistently

above 86%, indicating efficient utilization of system resources across varying

transaction loads. The analysis highlights the system's capability to maintain stable

performance across different transaction volumes.

The result of the proposed BPNN-BSSA model is compared to analyse the

performance based on various metrics. The BPNN-BSSA model outperforms other

models in terms of MSE, showcasing a significantly lower value compared to other

methodologies. The MSE value of BPNN-BSSA is 0.00000275 which is higher

than that of HCC-MGSA-ART (0.00000101), HBOCC (0.00000094), SAOL –

LRCD (0.00000114), RDMA-RCC (0.0000007), TCC –TDG (0.00000112),

ES2PL (0.00000081), MCSI-NVM (0.00000098), DPC2-CD (0.00000037),

RDMA-2PL (0.00000044), RDMA (0.00000068), and TEE –BCCH (0.00000092).

The model demonstrates higher throughput value of BPNN-BSSA of 3.523 Mbps

is lower than that 1.349mbps, 2.158mbps, 1.044 Mbps, 2.086 Mbps, 1.536 Mbps,

0.886 Mbps, 2.123 Mbps, 0.497 Mbps, 1.764 Mbps, 0.9114 Mbps, 2.096 Mbps,

lower than HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-RCC, TCC –

TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and TEE –BCCH

methods. The BPNN-BSSA model exhibits a lower conflict ratio compared to other

models. The conflict ratio of BPNN-BSSA (0.42) is higher and has a lower failure

ratio (0.05) compared to HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-

87

RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and

TEE –BCCH methods. The resultants signify that the BPNN-BSSA based on

reliability for transaction processing enhanced the performance in the distributed

environment.

4.4 CHAPTER SUMMARY

This chapter discusses the experimental setup, performance evaluation and the

results of the proposed model and also the results are compared to the recent

methods for transaction processing. The comparative analysis showed that the

BPNN-BSSA model demonstrated superior performance and provided higher

accuracy for prediction, better synchronization and coordination, higher reliability,

and overall effectiveness for transaction processing systems. The model handled

non-linear relationship and complexity problems between the I/O with efficient

performance and enhanced the concurrency control in the database. Overall, the

proposed BPNN-BSSA model showed a promising solution for scalable and

efficient transaction management in the distributed database environment.

88

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. CONCLUSION

The hybrid BPNN-BSSA model effectively manages the intricate and non-linear

correlation between input and output variables, demonstrating efficient

performance. By identifying the optimal set of weight and bias parameters, the

model minimizes error functions and enhances concurrency control efficiency.

Moreover, it dynamically selects between optimistic and pessimistic concurrency

models based on the observed conflict rate, adapting locking strategies according

to the workload of the database. Through the integration of BPNN and BSSA, the

model proficiently handles the transaction and versioning mechanisms, thereby

ensuring and augmenting concurrency control within the database. This innovative

approach, merging neural networks with optimization techniques, successfully

tackles the challenges associated with concurrent resource access in database

systems.

The model demonstrated exceptional performance compared to existing methods,

showcasing lower MSE, increased throughput, and minimized conflict and failure

ratios. The selection of concurrency control strategy dynamically adjusts based on

the conflict rate, allowing the model to choose an appropriate locking strategy

tailored to current database workloads. Integration of mechanisms for both

committed and uncommitted transactions further enhances the model's capability

for robust concurrency control. By adapting to different concurrency control

approaches and utilizing optimized neural network parameters, the model emerges

as a promising solution for efficient and scalable transaction management in

modern distributed database environments.

5.2 FUTURE WORK

The research work can be further continued in future with the following methods,

 The current model focuses on transaction processing in a general context.

The model could explore the applicability in real-time transaction processing

scenarios, where low latency and high throughput are critical requirements.

89

 The model can be emerged with blockchain-based databases or quantum

databases, future work could investigate how the BPNN-BSSA model could

be adapted or extended to support these emerging technologies and their

unique transaction management requirements.

 To facilitate wider adoption and usability the model could involve

developing user-friendly interfaces, tools, or frameworks that simplify the

deployment, configuration, and management of the model in various

database environments.

 To ensure protection it is essential to incorporate techniques such as

differential privacy and homomorphic encryption to safeguard sensitive data

and privacy during the optimization process. This ensures that user data

confidentiality is maintained, even during collaborative decision-making.

90

REFERENCES

[1] Abba Ari, A. A., Djedouboum, A. C., Gueroui, A. M., Thiare, O.,

Mohamadou, A., & Aliouat, Z. (2020). A three-tier architecture of large-

scale wireless sensor networks for big data collection. Applied Sciences,

10(15), 5382.

[2] Abdelhafiz, B. M. (2020, December). Distributed database using sharding

database architecture. In 2020 IEEE Asia-Pacific Conference on Computer

Science and Data Engineering (CSDE) (pp. 1-17). IEEE.

[3] Abduljalil, E., Thabit, F., Can, O., Patil, P. R., & Thorat, S. B. (2022). A new

secure 2PL real-time concurrency control algorithm (ES2PL). International

Journal of Intelligent Networks, 3, 48-57.

[4] Abuya, T. K., Rimiru, R. M., & Cheruiyot, W. K. A failure recovery

algorithm in Two-Phase commit protocol for optimizing transaction

atomicity.

[5] Ali, M. G. (2022). Adopting a Proxy Database to Prevent Direct Access to

Distributed Transaction Databases Ensuring Information Security. Journal of

Advances in Mathematics and Computer Science, 37(3), 43-55.

[6] Ali, S., Alauldeen, R., & Ruaa, A. (2020). What is Client-Server System:

Architecture, Issues and Challenge of Client-Server System. HBRP

Publication, 2(1), 1-6.

[7] Al-Qerem, A., Alauthman, M., Almomani, A., & Gupta, B. B. (2020). IoT

transaction processing through cooperative concurrency control on fog–

cloud computing environment. Soft Computing, 24, 5695-5711.

[8] Arora, V., Bhatia, R., & Singh, M. (2016). A systematic review of

approaches for testing concurrent programs. Concurrency and Computation:

Practice and Experience, 28(5), 1572-1611.

[9] Bernstein, P. A., Das, S., Ding, B., & Pilman, M. (2015, May). Optimizing

optimistic concurrency control for tree-structured, log-structured databases.

In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data (pp. 1295-1309).

91

[10] Bharati, R., & Attar, V. (2023). Hybrid Graph Partitioning with OLB

Approach in Distributed Transactions. Intelligent Automation & Soft

Computing, 37(1).

[11] Chaudhry, N., & Yousaf, M. M. (2022). Concurrency control for real‐

time and mobile transactions: Historical view, challenges, and evolution of

practices. Concurrency and Computation: Practice and Experience, 34(3),

e6549.

[12] Chittayasothorn, S. (2022, June). The Misconception of Relational

Database and the ACID Properties. In 2022 8th International Conference on

Engineering, Applied Sciences, and Technology (ICEAST) (pp. 30-33).

IEEE.

[13] Choi, D., & Song, S. (2016). Concurrency control method to provide

transactional processing for cloud data management system. International

Journal of Contents, 12(1), 60-64.

[14] Coronel, C., & Morris, S. (2019). Database systems: design,

implementation and management. Cengage learning.

[15] Di Sanzo, P., & Quaglia, F. (2022). On the effects of transaction data

access patterns on performance in lock-based concurrency control. IEEE

Transactions on Computers.

[16] Diallo, O., Rodrigues, J. J., Sene, M., & Lloret, J. (2013). Distributed

database management techniques for wireless sensor networks. IEEE

Transactions on Parallel and Distributed Systems, 26(2), 604-620.

[17] Dickerson, T., Gazzillo, P., Herlihy, M., & Koskinen, E. (2017, July).

Adding concurrency to smart contracts. In Proceedings of the ACM

Symposium on Principles of Distributed Computing (pp. 303-312).

[18] Ding, B., Kot, L., & Gehrke, J. (2018). Improving optimistic

concurrency control through transaction batching and operation

reordering. Proceedings of the VLDB Endowment, 12(2), 169-182.

[19] Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., & Wang, J.

(2018). Untangling blockchain: A data processing view of blockchain

systems. IEEE transactions on knowledge and data engineering, 30(7), 1366-

1385.

92

[20] Diop, L., Diop, C. T., Giacometti, A., & Soulet, A. (2022). Pattern on

demand in transactional distributed databases. Information Systems, 104,

101908.

[21] Dizdarevic, J., Avdagic, Z., Orucevic, F., & Omanovic, S. (2021).

Advanced consistency management of highly-distributed transactional

database in a hybrid cloud environment using novel R-TBC/RTA

approach. Journal of Cloud Computing, 10, 1-31.

[22] Dong, Z. Y., Tang, C. Z., Wang, J. C., Wang, Z. G., Chen, H. B., &

Zang, B. Y. (2020). Optimistic transaction processing in deterministic

database. Journal of Computer Science and Technology, 35, 382-394.

[23] Fan, P., Liu, J., Yin, W., Wang, H., Chen, X., & Sun, H. (2020). 2PC*:

a distributed transaction concurrency control protocol of multi-microservice

based on cloud computing platform. Journal of Cloud Computing, 9, 1-22.

[24] Freitag, M., Kemper, A., & Neumann, T. (2022). Memory-optimized

multi-version concurrency control for disk-based database systems.

Proceedings of the VLDB Endowment, 15(11), 2797-2810.

[25] Gabriel, B. C., & Kabari, L. G. (2020). Hybridized concurrency

control technique for transaction processing in distributed database

system. International Journal of Computer Science and Mobile

Computing, 9(9), 118-127.

[26] Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A.,

Khalil, I., Guizani, M., & Al-Fuqaha, A. (2017). Smart cities: A survey on

data management, security, and enabling technologies. IEEE

Communications Surveys & Tutorials, 19(4), 2456-2501.

[27] Ghasemi-Marzbali, A. (2020). A novel nature-inspired meta-heuristic

algorithm for optimization: bear smell search algorithm. Soft computing,

24(17), 13003-13035.

[28] Gohil, J. A., & Dolia, P. M. (2016). Design, implementation and

performance analysis of concurrency control algorithm with architecture for

temporal database. International Journal of Database Management Systems

(IJDMS), 8(5), 25-38.

[29] Gohil, J. A., & Dolia, P. M. (2016). Graphical Representation of

Optimistic Locking and Concurrency Control for Temporal Database using

93

Oracle 12c Enterprise Manager. International Journal of Computer

Applications, 148(7).

[30] Grohmann, J., Seybold, D., Eismann, S., Leznik, M., Kounev, S., &

Domaschka, J. (2020, November). Baloo: Measuring and modeling the

performance configurations of distributed dbms. In 2020 28th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS) (pp. 1-8). IEEE.

[31] Guo, J., Cai, P., Wang, J., Qian, W., & Zhou, A. (2019). Adaptive

optimistic concurrency control for heterogeneous workloads. Proceedings of

the VLDB Endowment, 12(5), 584-596.

[32] Guo, T., Zhang, Z., Yuan, Y., Yang, X., & Wang, G. (2024). Hybrid

concurrency control protocol for data sharing among heterogeneous

blockchains. Frontiers of Computer Science, 18(3), 183104.

[33] Gupta, S., & Sadoghi, M. (2018, March). EasyCommit: A Non-

blocking Two-phase Commit Protocol. In EDBT (pp. 157-168).

[34] Harding, R., Van Aken, D., Pavlo, A., & Stonebraker, M. (2017). An

evaluation of distributed concurrency control. Proceedings of the VLDB

Endowment, 10(5), 553-564.

[35] Jepsen, T., de Sousa, L. P., Moshref, M., Pedone, F., & Soulé, R.

(2018, August). Infinite resources for optimistic concurrency control. In

Proceedings of the 2018 Morning Workshop on In-Network Computing (pp.

26-32).

[36] Jin, C., Pang, S., Qi, X., Zhang, Z., & Zhou, A. (2021). A high

performance concurrency protocol for smart contracts of permissioned

blockchain. IEEE Transactions on Knowledge and Data Engineering, 34(11),

5070-5083.

[37] Jingyao, L. I., Qian, Z. H. A. N. G., Zhanhao, Z. H. A. O., Wei, L. U.,

Xiao, Z. H. A. N. G., & Xiaoyong, D. U. (2023). RDMA Optimization

Technology for Two-Phase Locking Concurrency Control. Journal of

Frontiers of Computer Science & Technology, 17(5), 1201.

[38] Jun, W., & Hong, S. K. (2018). Development and performance

evaluation of a concurrency control technique in object-oriented database

94

systems. KSII Transactions on Internet and Information Systems

(TIIS), 12(4), 1899-1911.

[39] Kambayashi, T., Tanabe, T., Hoshino, T., & Kawashima, H. (2023).

Shirakami: A hybrid concurrency control protocol for tsurugi relational

database system. arXiv preprint arXiv:2303.18142.

[40] Kniep, Q., Kokoris-Kogias, L., Sonnino, A., Zablotchi, I., & Zhang,

N. (2024). Pilotfish: Distributed Transaction Execution for Lazy

Blockchains. arXiv preprint arXiv:2401.16292.

[41] Li, Y., Chen, Z., Cai, Y., Huang, D., & Li, Q. (2017). Accelerating

convolutional neural networks using fine-tuned backpropagation progress. In

Database Systems for Advanced Applications: DASFAA 2017 International

Workshops: BDMS, BDQM, SeCoP, and DMMOOC, Suzhou, China, March

27-30, 2017, Proceedings 22 (pp. 256-266). Springer International

Publishing.

[42] Lin, Q., Chen, G., & Zhang, M. (2018, April). On the design of

adaptive and speculative concurrency control in distributed databases.

In 2018 IEEE 34th International Conference on Data Engineering

(ICDE) (pp. 1376-1379). IEEE.

[43] Liu, J., Zhang, S., Wang, Q., & Wei, J. (2022). Coordinating fast

concurrency adapting with autoscaling for slo-oriented web

applications. IEEE Transactions on Parallel and Distributed Systems, 33(12),

3349-3362.

[44] Liu, X., Chen, K., Liu, M., Cai, S., Wu, Y., & Zheng, W. (2022).

Multi-Clock Snapshot Isolation Concurrency Control for NVM

Database. Tsinghua Science and Technology, 27(6), 925-938.

[45] Lokhande, D. B., & Dhainje, P. B. (2019). A novel approach for

transaction management in heterogeneous distributed real time replicated

database systems. International Journal for Scientific Research and

Development, 7(1), 840-844.

[46] Lotfy, A. E., Saleh, A. I., El-Ghareeb, H. A., & Ali, H. A. (2016). A

middle layer solution to support ACID properties for NoSQL databases.

Journal of King Saud University-Computer and Information Sciences, 28(1),

133-145.

95

[47] Lyu, Z., Zhang, H. H., Xiong, G., Guo, G., Wang, H., Chen, J., ... &

Raghavan, V. (2021, June). Greenplum: a hybrid database for transactional

and analytical workloads. In Proceedings of the 2021 International

Conference on Management of Data (pp. 2530-2542).

[48] Mahajan, S., & Jain, L. (2023). A Study of Distributed Database

Management System. International Journal of Engineering and Management

Research, 13(2), 121-126.

[49] Masumura, K., Hoshino, T., & Kawashima, H. (2022). Fast

concurrency control with thread activity management beyond

backoff. Journal of Information Processing, 30, 552-561.

[50] Mohamed, M., Badawy, M., & EL-Sayed, A. (2019). An improved

algorithm for database concurrency control. International Journal of

Information Technology, 11, 21-30.

[51] Mohana, M., & Jaykumar, C. (2017). Hierarchical replication and

multiversion concurrency control model for mobile database systems

(MDS). Wireless Networks, 23, 1401-1411.

[52] Moiz, S. (2015). A hybrid concurrency control strategy for mobile

database systems. Advances in Research, 3(4), 374-381.

[53] Muslihah, I., & Nastura, S. A. (2020). Transaction Processing System

Analysis Using The Distribution Management System (DMS) Nexsoft

Distribution 6 (ND6). International Journal of Computer and Information

System (IJCIS), 1(2), 31-34.

[54] Nakamura, Y., Kawashima, H., & Tatebe, O. (2019). Integration of

tictoc concurrency control protocol with parallel write ahead logging

protocol. International Journal of Networking and Computing, 9(2), 339-

353.

[55] Neumann, T., Mühlbauer, T., & Kemper, A. (2015, May). Fast

serializable multi-version concurrency control for main-memory database

systems. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data (pp. 677-689).

[56] Nguyen, T., & Kawashima, H. (2023, November). Fairly

decentralizing a hybrid concurrency control protocol for real-time database

96

systems. In 2023 Eleventh International Symposium on Computing and

Networking Workshops (CANDARW) (pp. 24-30). IEEE.

[57] Nikolić, L., Dimitrieski, V., & Čeliković, M. (2024). An approach for

supporting transparent acid transactions over heterogeneous data stores in

microservice architectures. Computer Science and Information Systems,

(00), 6-6.

[58] Olivares-Rojas, J. C., Reyes-Archundia, E., Gutiérrez-Gnecchi, J. A.,

González-Murueta, J. W., & Cerda-Jacobo, J. (2020). A multi-tier

architecture for data analytics in smart metering systems. Simulation

Modelling Practice and Theory, 102, 102024.

[59] Özsu, M. T., & Valduriez, P. (1999). Principles of distributed database

systems (Vol. 2). Englewood Cliffs: Prentice Hall.

[60] Pan, H., Ta, Q. T., Zhang, M., Chee, Y. M., Chen, G., & Ooi, B. C.

(2023). FLAC: A Robust Failure-Aware Atomic Commit Protocol for

Distributed Transactions. arXiv preprint arXiv:2302.04500.

[61] Pandey, S., & Shanker, U. (2018). On using priority inheritance-based

distributed static two-phase locking protocol. In Advances in Data and

Information Sciences: Proceedings of ICDIS-2017, Volume 1 (pp. 179-188).

Springer Singapore.

[62] Pandey, S., & Shanker, U. (2018, June). CART: a real-time

concurrency control protocol. In Proceedings of the 22nd International

Database Engineering & Applications Symposium (pp. 119-128).

[63] Poudel, P., Rai, S., & Guragain, S. (2024). Ordered scheduling in

control-flow distributed transactional memory. Theoretical Computer

Science, 114463.

[64] Ramesh, D., Gupta, H., Singh, K., & Kumar, C. (2015). Hash based

incremental optimistic concurrency control algorithm in distributed

databases. In Intelligent Distributed Computing (pp. 139-150). Springer

International Publishing.

[65] Sheikhan, M., & Ahmadluei, S. (2013). An intelligent hybrid

optimistic/pessimistic concurrency control algorithm for centralized

database systems using modified GSA-optimized ART neural model. Neural

Computing and Applications, 23, 1815-1829.

97

[66] Sheikhan, M., Rohani, M., & Ahmadluei, S. (2013). A neural-based

concurrency control algorithm for database systems. Neural Computing and

Applications, 22, 161-174.

[67] Shen, S., Wei, X., Chen, R., Chen, H., & Zang, B. (2022). DrTM+ B:

Replication-driven live reconfiguration for fast and general distributed

transaction processing. IEEE Transactions on Parallel and Distributed

Systems, 33(10), 2628-2643.

[68] Stephan, J., Fink, J., Kumar, V., & Ribeiro, A. (2017). Concurrent

control of mobility and communication in multirobot systems. IEEE

Transactions on Robotics, 33(5), 1248-1254.

[69] Taft, R., Mansour, E., Serafini, M., Duggan, J., Elmore, A. J.,

Aboulnaga, A., ... & Stonebraker, M. (2014). E-store: Fine-grained elastic

partitioning for distributed transaction processing systems. Proceedings of

the VLDB Endowment, 8(3), 245-256.

[70] Uchida, H., & Kawashima, H. (2024). CLMD: Making Lock Manager

Predictable and Concurrent for Deterministic Concurrency

Control. International Journal of Networking and Computing, 14(1), 81-92.

[71] Wang, C., & Qian, X. (2021). RDMA-enabled concurrency control

protocols for transactions in the cloud era. IEEE Transactions on Cloud

Computing, 11(1), 798-810.

[72] Wang, Q., Chen, H., Zhang, S., Hu, L., & Palanisamy, B. (2018).

Integrating concurrency control in n-tier application scaling management in

the cloud. IEEE Transactions on Parallel and Distributed Systems, 30(4),

855-869.

[73] Wang, T., & Kimura, H. (2016). Mostly-optimistic concurrency

control for highly contended dynamic workloads on a thousand

cores. Proceedings of the VLDB Endowment, 10(2), 49-60.

[74] Wang, T., Johnson, R., Fekete, A., & Pandis, I. (2017). Efficiently

making (almost) any concurrency control mechanism serializable. The

VLDB Journal, 26, 537-562.

[75] Wei, X., Dong, Z., Chen, R., & Chen, H. (2018). Deconstructing

{RDMA-enabled} distributed transactions: Hybrid is better!. In 13th

98

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18) (pp. 233-251).

[76] Wei, X., Shi, J., Chen, Y., Chen, R., & Chen, H. (2015, October). Fast

in-memory transaction processing using RDMA and HTM. In Proceedings

of the 25th Symposium on Operating Systems Principles (pp. 87-104).

[77] Weng, S., Wang, Q., Qu, L., Zhang, R., Cai, P., Qian, W., & Zhou, A.

(2024). Lauca: A Workload Duplicator for Benchmarking Transactional

Database Performance. IEEE Transactions on Knowledge and Data

Engineering.

[78] Wu, Y., Arulraj, J., Lin, J., Xian, R., & Pavlo, A. (2017). An empirical

evaluation of in-memory multi-version concurrency control. Proceedings of

the VLDB Endowment, 10(7), 781-792.

[79] Xia, H., Chen, J., Ma, N., Huang, J., & Du, X. (2023, April). Efficient

execution of blockchain transactions through deterministic concurrency

control. In International Conference on Database Systems for Advanced

Applications (pp. 509-518). Cham: Springer Nature Switzerland.

[80] Xia, Y., Yu, X., Butrovich, M., Pavlo, A., & Devadas, S. (2022, June).

Litmus: Towards a practical database management system with verifiable

acid properties and transaction correctness. In Proceedings of the 2022

international conference on management of data (pp. 1478-1492).

[81] Yadav, A. K., Raw, R. S., & Bharti, R. K. (2023). DPC 2-CD: a secure

architecture and methods for distributed processing and concurrency control

in cloud databases. Cluster Computing, 26(3), 2047-2068.

[82] Yamada, H., & Nemoto, J. (2022). Scalar DL: Scalable and practical

Byzantine fault detection for transactional database systems. Proceedings of

the VLDB Endowment, 15(7), 1324-1336.

[83] Yao, C., Agrawal, D., Chang, P., Chen, G., Ooi, B. C., Wong, W. F., &

Zhang, M. (2015). Dgcc: A new dependency graph based concurrency

control protocol for multicore database systems. arXiv preprint

arXiv:1503.03642.

[84] Yao, C., Zhang, M., Lin, Q., Ooi, B. C., & Xu, J. (2018). Scaling

distributed transaction processing and recovery based on dependency

logging. The VLDB Journal, 27, 347-368.

99

[85] Yu, X., Pavlo, A., Sanchez, D., & Devadas, S. (2016, June). Tictoc:

Time traveling optimistic concurrency control. In Proceedings of the 2016

International Conference on Management of Data (pp. 1629-1642).

[86] Yu, X., Xia, Y., Pavlo, A., Sanchez, D., Rudolph, L., & Devadas, S.

(2018). Sundial: Harmonizing concurrency control and caching in a

distributed OLTP database management system. Proceedings of the VLDB

Endowment, 11(10), 1289-1302.

[87] Zhang, Q., Li, J., Zhao, H., Xu, Q., Lu, W., Xiao, J., ... & Du, X.

(2023). Efficient distributed transaction processing in heterogeneous

networks. Proceedings of the VLDB Endowment, 16(6), 1372-1385.

[88] Zhao, H., Li, J., Lu, W., Zhang, Q., Yang, W., Zhong, J., ... & Pan, A.

(2024). RCBench: an RDMA-enabled transaction framework for analyzing

concurrency control algorithms. The VLDB Journal, 33(2), 543-567.

[89] Žužek, T., Kušar, J., Rihar, L., & Berlec, T. (2020). Agile-Concurrent

hybrid: A framework for concurrent product development using

Scrum. Concurrent Engineering, 28(4), 255-264.

 جمهورٌة العراق

 وزارة التعلٌم العالً والبحث العلمً

ت جامعة تكرٌ

 كلٌة علوم الحاسوب والرٌاضٌات

 قسم علوم الحاسوب

تطوٌر نموذج التحكم فً التزامن الهجٌن لمعالجة المعاملات فً

 نظام قاعدة البٌانات الموزعة

 رسالة مقدمة إلى

والرٌاضٌات،مجلس كلٌة علوم الحاسوب

 جامعة تكرٌت،

 كجزء من متطلبات الحصول على درجة الماجستٌر فً علوم الحاسوب

 الطالب

 مثنى عبدالله صالح

 شراف إب

 أ.م.د سعدي حمد ثلج

 م 0204هـ 6441

 ملخص

الأنظميييل ا مة ميييل ا م يييحا أن مةييي منظميييل : فيييا مييي بٌاااان المشاااكلة

(غييييييل الأدماييييييل داحة DDBMSإداحة قةامييييييد ا ا نيييييي ا مة مييييييل

ا ا نيييي ا من عييييحة م ييييح مةاقييييأ م ةييييددةق ةا يييي منظمييييل إداحة قةامييييد

ا ا نييي ا مة ميييل يييدا فيييا ا ييي ح فيييا ا ييي ام ن اييي ةيييد إداحة

ا يييي ا ةملايييي ميييي ذييييعا ن اييييت ا مةيييي مع فييييا ةقيييي ةا ييييد ممييييح

الأدماييييلق امحيييي م ةيييي نا نميييي تا ا يييي ح فييييا ا يييي ام ا م لييييل ميييي

معييييييحع فييييييا الأدا تيييييي م مةييييييد ا ةيييييي ح ا م ة ييييييل ييييييا

ا مةيييييي مع ق دنيييييي ه ييييييل إ ييييييض ن يييييي دانيييييي ماحا ذ ايييييي ح مف ييييييا

اتيييي حا ا ال ليييي ح فييييا ا يييي ام عييييحا حا ييييا نيييي ملييييض ظييييحة

 لاقا مة مع فا ا ةق ا ة

ا يييد مييي ديييت ا دحاتيييل دييية أيييةاح نميييةتا أيييةاح اذ ييي ح الهااادف

 عيييحا دانييي ماحا يييا متييي ام ا ييي ح فيييا ا ييي ام ا م ليييل ةا م عييي مل

فيييا منظميييل إداحة قةاميييد ا ا نييي ا مة ميييلق يييد ديييت ا دحاتيييل إ يييض

 أيييةاح ذةاح مايييل يييةا عيييحا دانييي ماحا يييا ا ييي ح فيييا ا ييي ام

 فييييييا منظمييييييل إداحة قةامييييييد ا ا نيييييي ا مة مييييييلن ا م ييييييا ةا م عيييييي

ة تييييا الأدا ةا تيييي ميييي ذييييعا ا حايييي مييييأ مةييييد ا ةيييي ح

 ا م ة لق

 تييييي اد ا ذةاح مايييييل ا مب ح يييييل مييييي عييييي حل مةييييي ال تا المنهجٌاااااة

(دايييد مييي إتا حييي تيييا مييين ق يييا مة دايييد BPNNان عييي ح ذل يييا

 ا نييي مة ميييلق ييي تيييا مةلمييي ا مة مليييل ا ييي ة فيييا ا يييل ق ميييدة

BPNN تييييي ذدا ذةاح مايييييل ا ييييي مييييي حا يييييل ا يييييدم BSSA ن)

ةا ييييا يييي ةييييمام يييي أ ا عيييي حل عييييحا دقايييي ميييي م ييييا ا ذيييي ت

قييحاحا مف يياق مييأ إدحاه منيي فييا ا مييدادا ا ةملاييلن يي ميي حيية

(RS(ةم مةميييييل ا بيييييحا ة WSا مةلةمييييي يييييةا م مةميييييل ا ح يييييل

 ا ييييي فبيييييأ ق يييييا ن ايييييت ا مة مليييييلن ييييي ةيييييما ا ذةاح مايييييل م يييييل

 RSة WS تييييييي اة م ا تيييييييان حاةد ا يييييييا ييييييية مليييييييض ا نييييييي

اذ ا حايييييل مة ايييييح ح مليييييلق تيييييم ي ايييييل ا ذ اييييي ح ا دان ماحايييييل ديييييت ن

ن لنظيييييييي ذ ايييييييي ح مف ييييييييا BPNN-BSSAا مدمةمييييييييل م مةمييييييييل

مليييييض مةيييييدا اتييييي حا ا ال لييييي ح فيييييا ا ييييي ام عيييييحا حا يييييا نييييي

 ا ة ح ا اق

 تيييان ح ايييحة فيييا BSSA-BPNNمظ يييح ن ايييت ذةاح مايييل النتاااا ج

حييا ميي مةييدا إن ييي ا ا مةيي مع ةا تيي مب حنيييل تيي ام ا يي ح فيييا

ا ييييي ام ا يييييل ا بلادايييييلق مييييي ذيييييعا ا ةيييييداا ا يييييدان ماحا مةيييييدا

ا ةيييييي ح فييييييا ا ةقيييييي ا ةلييييييان محنيييييي ا ذةاح ماييييييل ميييييي بلاييييييا

 ة ح ييييي ا مةييييي مع ة تيييييا الأدا ا ةييييي لنظييييي ن ةذ ةيييييل فيييييا

-BSSAتييييان حاةد ا ةيييي ح ا ةيييي اق ا تيييي ن ا: ييييةفح ذةاح ماييييل

BPNN ا مب ح يييييل يييييع فةييييي لييييي ح ا يييييدان ماحا فيييييا ا ييييي ام فيييييا

منظميييل إداحة قةاميييد ا ا نييي ا مة ميييلن ةمةا نيييل الأدا ةا تييي مييي

 ةييي ح ا م نةميييلق اةييي دمييي بناييي ذيييعا ا حاييي ميييأ مةيييد ا

ا ييي ةل ا يييا ةا تيييا فيييا مملايييل ا ييي ح فيييا ا ييي ام قيييدحة ا نظييي

ا ملييييض ا ة مييييا مييييأ ظييييحة ا مةيييي مع ا م نةمييييلن مميييي ا ةليييي ذايييي ح

 قةا ا قةامد ا ا ن ا مة مل ا دا لق

 BSSA-BPNNفييييا ييييا م ذةاح ماييييل القٌااااود والعماااال المسااااتقبلً

ةامييييدةن إ من يييي اتيييي ذ اييييل ميييي ا باييييةدق ة مييييد فة اييييل ا ذةاح ماييييل

مليييض دقيييل ا ن يييل مةيييدا ا ةييي ح ن ةا يييت امحييي م ا ييي ح ييي غاحا

 ايييح ا م ةقةيييل فيييا منمييي أ ا مةييي مع ق ييي فل إ يييض ت يييهن قيييد يييل ح

ملييييييض الأدا فييييييا BSSAة BPNNا ن بيييييي ا تيييييي ال ا ييييييا بييييييدم

مةييييي مع ا مح ةيييييل لغ ايييييلق ا يييييم م اححييييي الأنظميييييل تا م ييييي ا

ا ةمييييييا ا متيييييي ب لا ملييييييض تييييييا ي اييييييل ا ن ييييييل مةييييييدا ا ةيييييي ح ن

ةات حعيييي ذةاح مايييي ا تييييا ا دالييييلن ةاذ يييي ح ا ذةاح ماييييل فييييا

ييييي ةمح يييييح نأ ق ييييي ة اييييي ق لايييييل ا ةتيييييأ ا ييييي مة ميييييل مح يييييح نةم

 ةا ح ة عحا مح حق

