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ABSTRACT 

Problem Statement: In the interconnected world of distributed systems, 

Distributed Database Management Systems (DDBMS) have become critical for 

managing data spread across multiple locations. DDBMS face challenges in 

concurrency control, where managing operations from concurrently executing 

transactions is crucial. Optimistic concurrency control models can suffer from 

performance issues due to varying conflict rates among transactions. A dynamic 

approach is needed to adaptively select the best concurrency control strategy based 

on real-time transaction conditions. Objective: The objective of this study is to 

develop a develop model that dynamically selects between optimistic and 

pessimistic concurrency control approaches in DDBMS. This study aims to 

develop an algorithm that dynamically switches between optimistic and pessimistic 

concurrency control in DDBMS, optimizing performance and consistency by 

adapting to varying conflict rates. Methodology: The proposed algorithm 

leverages a Back Propagation Neural Network (BPNN) to determine whether to 

grant a lock or identify the winning transaction in a distributed database 

environment. The BPNN's parameters are optimized using the Bear Smell Search 

Algorithm (BSSA), which is designed to fine-tune the network for better decision-

making. Recognizing that in practical settings, information about the writeset (WS) 

and readset (RS) is often only partially available before transaction execution, the 

algorithm is tailored to accommodate scenarios with optional or incomplete WS 

and RS data. This dynamic selection mechanism, supported by the BPNN-BSSA 

combination, allows the system to adaptively choose the best concurrency control 

strategy based on the current conflict rate. Results: The implementation of the 

BSSA-BPNN algorithm demonstrated significant improvements in both transaction 

throughput and consistency compared to traditional static concurrency control 

methods. By dynamically adjusting to the conflict rate in real-time, the algorithm 

was able to reduce transaction conflicts and improve overall system performance, 

particularly in high-conflict scenarios. Conclusion: The proposed BSSA-BPNN 

algorithm provides an effective solution for dynamic concurrency control in 

DDBMS, balancing performance and consistency by adapting to varying conflict 

rates. The integration of machine learning and optimization techniques into the 

concurrency control process enhances the system's ability to handle diverse 

transaction conditions, making it a robust option for modern distributed database 
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environments. Limitations and Future Work: While the BSSA-BPNN algorithm 

shows promise, it is not without limitations. The effectiveness of the algorithm is 

contingent on the accuracy of the conflict rate prediction, which can be influenced 

by unpredictable changes in transaction patterns. Additionally, the computational 

overhead introduced by the BPNN and BSSA may affect performance in systems 

with extremely high transaction volumes. Future work should focus on refining the 

conflict rate prediction mechanism, exploring alternative optimization algorithms, 

and testing the algorithm in more diverse and larger-scale distributed environments 

to further enhance its scalability and efficiency. 

  



III 
 

TABLE OF CONTENTS 

CHAPTE

R NO. 

CHAPTERS PAGE 

NO. 

1 INTRODUCTION 1 

 1.1. SCOPE AND MOTIVATION OF THE RESEARCH 1 

 1.2. PROBLEM DEFINITION 2 

 1.3. RESEARCH OBJECTIVES 3 

 1.4. CONTRIBUTION 4 

 1.5. THESIS ORGANIZATION 5 

 1.6. CHAPTER SUMMARY 6 

2 DISTRIBUTED DATABASE MANAGEMENT SYSTEMS AND 

DESIGN OF CONCURRENCY CONTROL IN DDBMS 

7 

 2.1. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 

2.1.1. Characteristics of Distributed Databases 

2.1.2. DDBMS Architecture 

2.1.2.1 Two-Tier Client/Server Architecture 

2.1.2.2 Three-Tier Client/Server Architecture 

2.1.2.3Multi-Tier Client/Server Architecture 

2.1.3. Types of DDBMS 

2.1.4. Distributed Transaction Processing (DTP) 

 

8 

 
9 

10 

11 

12 

13 

14 

16 



IV 
 

2.1.5. ACID (Atomicity, Consistency, Isolation, Durability) Properties 

of Transactions 

2.1.6. Transaction Management applications 

2.1.7. Concurrency Control Problem 

2.1.8. Concurrency Control Strategies 

1. Optimistic Concurrency Control 

2. Pessimistic Concurrency Control 

3. Hybrid Concurrency Control 

 2.2. LITERATURE REVIEW 

2.2.1. Distributed Transaction Processing 

2.2.2. Concurrency Control Methods 

2.2.3. Hybrid Concurrency Control Methods 

2.2.4. Inferences from Literature Methods 

2.2.5. Research gaps 

 

 2.3. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS 46 

 2.4. STRUCTURE OF DISTRIBUTED TRANSACTIONS 48 

 2.5.  MODELING OF DDBMS 49 

 2.6. CONCURRENCY CONTROL PROTOCOL FOR THE DDBMS 

MODEL 

51 

 2.7. CHAPTER SUMMARY 58 

3 HYBRID CONCURRENCY CONTROL TECHNIQUE FOR 

TRANSACTION PROCESSING IN DISTRIBUTED DATABASE 

SYSTEM 

59 

 3.1.  INTRODACTIN 

 

59 

 

 

17 

18 

18 

19 

23 

24 

30 

41 

45 

46 



V 
 

 3.2. HYBRID CONCURRENCY CONTROL MODEL FOR 

TRANSACTION PROCESSING 

59 

 3.3. BACK PROPAGATION NEURAL NETWORK (BPNN) 61 

 3.4. BEAR SMELL SEARCH ALGORITHM (BSSA) 64 

 3.5. BPNN-BAAS-BASED HYBRID CONCURRENCY CONTROL 

MODEL 

70 

 3.6. IMPLEMENTATION 75 

 3.7. CHAPTER SUMMARY 78 

4 RESULTS AND DISCUSSION 79 

 4.1. EXPERIMENTAL SETUP AND EVALUATION METRICS 79 

 4.2. PERFORMANCE RESULTS 80 

 4.3. DISCUSSION OF RESULTS 86 

 4.4. CHAPTER SUMMARY 87 

5 CONCLUSION AND FUTURE WORK 88 

 5.1. CONCLUSION 88 

 5.2. FUTURE WORK 88 

 REFERENCES  

 

 

 



VI 
 

LIST OF TABLES 

Table. 

No 

Title Page. 

No 

2.1 BENEFITS AND LIMITATIONS OF HYBRID CONCURRENCY CONTROL 

MODEL FOR TRANSACTION PROCESSING 
23 

4.2 Performance metrics for a system under various numbers of transactions. 80 

4.3 Comparative analysis of performance metrics with existing methods 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 
 

LIST OF FIGURES 

 

Figure. 

No 

Title Page. No 

2.1 Client/server architecture 11 

2.2 Two-Tier Client/Server Architecture 12 

2.3 Three-Tier Client/Server Architecture 13 

2.4 Types of DDBMS 15 

2.5 Modeling of DDBMS 51 

2.6 Concurrency control protocol 52 

2.7 Basic 2PL locking protocol 53 

2.8 Strict two-phase locking protocol 54 

3.1 Block diagram for hybrid concurrency control 60 

3.2 Architecture of the proposed model 62 

3.3 Graphical view of the olfactory system 69 

3.4 Block diagram for the proposed BPNN-BSSA model 70 

3.5 Flowchart of the hybrid concurrency control model 73 

3.6 ATM interface 76 

3.7 Customer Interface 77 

3.8 Employee interface 77 

4.1 Comparison of MSE between BPNN-BSSA with other approaches 82 



VIII 
 

4.2 Comparison of Throughput between BPNN-BSSA with other 

approaches 

83 

4.3 Comparison of Conflict Ratio between BPNN-BSSA with other 

approaches 

84 

4.4 Comparison of Failure Ratio between BPNN-BSSA with other 

approaches 

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

LIST OF ABBREVIATIONS 

DDB Distributed Database 

DDBMS Distributed Database Management System 

DBMS Database Management System 

2PC Two-Phase Commit 

3PC Three-Phase Commit 

RDBMS Relational Database Management Systems 

DTP Distributed Transaction Processing 

ACID Atomicity Consistency Isolation  Durability 

ERP Enterprise Resource Planning 

DistDGCC Distributed Dependency Graph Concurrency Control 

YCSB Yahoo! Cloud Serving Benchmark 

TPC-C Transaction Processing Performance Council Benchmark C 

ARIES Aryabhatta Research Institute of Observational Sciences 

OCC Optimistic Concurrency Control 

EC2 Amazon Elastic Compute Cloud  

S3 Simple Storage Service 

DOCC Deterministic and Optimistic Concurrency Control 

R-TBC/RTA Rose Tree Based Consistency/Rose Tree Algorithm 

GPA-BHC Bayesian hierarchical clustering and Graph Partitioning Algorithm 

PEM Performance, Efficiency, and Manageability 

BFD Byzantine fault detection 

FLAC Failure-Aware Atomic Commit 

RLSM Robustness-Level State Machine 



X 
 

HGP Hybrid Graph Partitioning 

OLB Optimized Load Balancing 

RDMA Remote Direct Memory Access 

OFFEXEC Optimal Execution Time 

OFFCOMM Competitive Communication 

OLTP Online Transaction Processing 

SPTM Service Proxy Transaction Management 

MVCC Multi-Version Concurrency Control 

MSA Microservice Architectures 

HF Health Factor 

ART2 Adaptive Resonance Theory 2 

RS Readset 

WS Writeset 

TE Transaction Effectiveness 

HBOCC Hash-Based Incremental Optimistic Concurrency Control 

JAG_TDB_CC Temporal  Database Concurrency  Control 

SCN System Change Number 

MOCC Mostly-Optimistic Concurrency Control 

MQL Multi Queuing Lock 

CDMS ClusteriX Data Management System 

RDD Resilient Distributed Dataset 

RCN Record Change Number 

MDS Mobile Database Systems 

CHs Cluster Heads 



XI 
 

CCM Concurrency Control Mechanism 

OODB Object-Oriented Databases 

ASOCC Adaptive and Speculative Optimistic Concurrency Control 

2PL Two-Phase Locking 

DCM Dynamic Concurrency Management 

AOCC Adaptive Optimistic Concurrency Control 

DFCL Deadlock-Free Cell Lock 

P-WAL Parallel Write-Ahead Logging 

SAOL Secondary Asynchronous Optimistic Lock 

LRCD Least Recent Conflict Dependence 

TDG Transaction Dependency Graph 

SCT Scatter-Concurrency Throughput 

AdaTAM Adaptive Variant Thread Activity Management 

TAM Thread Activity Management 

ES2PL  Secure 2PL Real-Time Concurrency Control Algorithm  

MCSI Multi-Clock Snapshot Isolation 

NVM Non-Volatile Memory 

DPC2-CD Distributed Processing and Concurrency Control in Cloud Databases 

LUN Logical Unit Numbers 

RDM Raw Device Mapping 

NPIV N_port ID virtualization 

DBaaS Database-as-a-Service 

TS-DLP Time-Stamp-Based Distributed Locking Protocol 

RDMA Remote Direct Memory Access 



XII 
 

T/O Timeout-based Concurrency Control 

CLMD Concurrent Lock Manager For Deterministic Concurrency Control 

Protocols 

MGSA Modified Gravitational Search Algorithm 

OLAP Online Analytical Processing 

FairTID Fair Thread ID 

TEE Trusted Execution Environment 

BPNN Back Propagation Neural Network 

BSSA Bear Smell Search Algorithm 

MP Master Process 

COP Cohort Processes 

UP Update Processes 

I/O Input/output 

C2PL Conservative two-phase locking protocol 

S2PL Strict two-phase locking protocol 

R2PL Rigorous two-phase locking protocol 

T Transaction 

Q Data Item 

TS Timestamp 

POC Probability Odor Components 

POF Probability Odor Fitness 

OF Odor Fitness 

EOF Expected Odor Fitness 

DOC Distance Odor Components 

TP Throughput 



XIII 
 

CR Conflict rate 

ET Execution time 

MSE Mean Squared Error  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIV 
 

LIST OF SYMBOLS 

  Signal Transition 

 𝑛 Hidden Layer 

𝑤𝑚 𝑛 Weight Connection 

 𝑛 Threshold Value 

𝑣𝑙 Output of the neuron 

   Expected Output 

(  𝑙  𝑦𝑙 )𝑦𝑙 (   𝑦𝑙 ) Error correction in the output layer 

 𝑖  ,𝑜 𝑖
  𝑜 𝑖

   𝑜 𝑖
𝑗
  𝑜 𝑖

𝑘 - odor received with   molecules/components 

    , 𝑖-𝑛  𝑘   [𝑜 𝑖
𝑗
]
𝑛  𝑘

 Odor matrix 

  𝑖
𝑗
 Breathing function and glomerular layer process  

  𝑖( 𝑖) Olfactory epithelium 

   * 𝑠   𝑠     𝑠𝑛+ External Inputs to the Mitral cells 

     * 𝑠    𝑠      𝑠 𝑛+ Central Input to Granule cells 

 𝑥( )   * 𝑥(𝑥 )  𝑥(𝑥 )    𝑥(𝑥𝑛)+ Outputs of the Mitral cells 

      𝑎𝑛     Relationship between the Granular and Mitral Cells 

 𝑙  𝑕 𝑎𝑛   𝑤 Connection Constants 

    Probability Odor Components 

    Probability Odor Fitness 

   Odor Fitness 

    Expected Odor Fitness 



XV 
 

    Distance Odor Components 

     and    Odors thresholds 

 𝑡 𝑟𝑚 𝑥 Maximum Iterations 

    conflict rate parameter 

   number of conflicts 

      𝑎𝑛    random weight vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

CHAPTER ONE 

INTRODUCTION 

It is vital to store data across multiple nodes or locations. The focus was on 

managing concurrent transactions efficiently and ensuring consistency and 

isolation properties across the distributed environment. There are different methods 

based on locking and timestamps, according to which the performance of the 

proposed model is evaluated in terms of throughput, access time, and scalability. 

Distributed database systems present challenges that do not exist in centralized 

systems. Multiple interconnected databases are deployed across different 

geographical locations to enable efficient data access and management. There are 

significant challenges due to network latency, data duplication, and node failure. In 

this research, It developed a hybrid concurrency control model designed to process 

transactions in distributed database systems. This model must adapt to the dynamic 

nature of distributed systems, including changing network conditions, node 

failures, and data evaluation. 

 

1.1. SCOPE AND MOTIVATION OF THE RESEARCH 

Investigating concurrency control models specifically tailored for distributed 

database systems, where data is stored across multiple nodes or sites. Focusing on 

managing concurrent transactions efficiently and ensuring consistency and 

isolation properties across the distributed environment is vital. It is also important 

for exploring a combination of concurrency control mechanisms to leverage the 

strengths of different approaches, such as locking-based and timestamp-based 

methods. Assessing the performance of the proposed technique in terms of 

throughput, latency, and scalability, considering the challenges posed by distributed 

environments. Addressing various consistency models, such as strict consistency, 

eventual consistency, and causal consistency, and their implications on 

concurrency control in distributed settings. Investigating mechanisms to ensure 

transactional consistency and recoverability in the presence of node failures, 

network partitions, and other distributed system failures. 

Distributed database systems introduce challenges not present in centralized 

systems, such as network latency, communication overhead, and data partitioning. 

These challenges motivate the need for tailored concurrency control techniques. 
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Ensuring that transactions execute concurrently while maintaining data consistency 

and isolation is crucial for the correctness and performance of distributed systems. 

Traditional concurrency control techniques may face scalability limitations in 

distributed environments with a large number of nodes and high transaction 

volumes. Hybrid techniques offer the potential to improve scalability while 

maintaining correctness. The motivation to research hybrid concurrency control 

techniques lies in the desire to optimize the performance of distributed database 

systems by leveraging the strengths of different concurrency control mechanisms 

based on the characteristics of the workload and system configuration. Distributed 

database systems are pervasive in modern applications such as cloud computing, 

social networks, and e-commerce platforms. Enhancing the concurrency control 

techniques in these systems can lead to improved reliability, performance, and user 

experience. Therefore, the research aims to address the challenges inherent in 

managing concurrency in distributed database systems by proposing and evaluating 

a hybrid concurrency control technique. This technique is motivated by the need to 

ensure consistency, scalability, and performance in real-world distributed 

applications. 

 

1.2. PROBLEM DEFINITION 

In a distributed database system, multiple interconnected databases are spread 

across different geographical locations, enabling efficient data access and 

management. However, ensuring consistency and concurrency control in such a 

distributed environment poses significant challenges due to factors like network 

latency, data replication, and node failures. Concurrency control techniques play a 

crucial role in maintaining data integrity and transaction correctness in distributed 

databases. The research problem revolves around developing a hybrid concurrency 

control technique tailored for transaction processing in distributed database 

systems. Designing a concurrency control mechanism that ensures transactions can 

execute concurrently while preserving data consistency across distributed nodes. 

This involves exploring various concurrency control models, such as locking, 

timestamp ordering, and optimistic concurrency control, and identifying their 

limitations in a distributed setting. This model must adapt to the dynamic nature of 

distributed systems, including varying network conditions, node failures, and data 

partitioning. The proposed technique should be robust enough to handle these 

challenges without sacrificing performance or data consistency. It must investigate 
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optimization strategies to enhance the performance and scalability of the 

concurrency control technique. This includes exploring techniques to minimize the 

overhead of coordination among distributed nodes, reduce contention for shared 

resources, and improve transaction throughput under heavy workloads. These 

mechanisms must ensure fault tolerance and recovery in case of node failures or 

network partitions. This involves designing strategies for transaction recovery, data 

replication, and distributed commit protocols to maintain data consistency and 

recover from failures seamlessly. This hybrid concurrency control technique must 

address the unique challenges posed by distributed database systems, offering 

improved performance, scalability, and fault tolerance while ensuring data 

consistency and transaction correctness. 

 

1.3. RESEARCH OBJECTIVES 

The research advances the system in a distributed environment by integrating 

Hybrid concurrency control techniques and natural-based search algorithms to 

effectively enhance efficiency. 

 To develop a resilient model to face the failures related to requests, sites, 

queries, and communication. 

 To develop a model that permits parallel execution of transactions and 

achieves maximum concurrency. 

 The computational methods and storage mechanisms should be modest to 

minimize overhead. 

 To develop hybrid concurrency control approach combines optimistic and 

pessimistic approaches and then dynamically selects the concurrency control 

technique for the corresponding transaction sets using the conflict rate. 
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1.4. CONTRIBUTION 

A hybrid concurrency control method for transaction processing in distributed 

database systems is introduced, utilizing artificial neural networks and a bio-

inspired optimization algorithm. This hybrid method integrates the Back 

Propagation Neural Network (BPNN) and Bear Smell Search Algorithm (BSSA). The 

BPNN method is utilized to handle the lock-grand decisions and to resolve the 

conflicts by determining the successful transactions. The parameters of the BPNN 

are fine-tuned by using the natural inspired algorithm BSSA. Regarding the 

transaction conflicts, resource contention, and system performance metrics the 

BPNN is trained on the historical data to enable the model to learn the patterns 

and relationships between various input parameters and for desired concurrency 

control decisions. In concurrency control, the BPNN is used to handle the complex 

and non-linear relationships between input parameters and desired outputs. 

However, the performance of BPNN is highly dependent on the quality of training 

and optimizing the internal parameters such as weight and bias. To optimize the 

parameters the BSSA is utilized for making the concurrency control decisions. The 

proposed technique aims to find the optimal set of BPNN parameters that 

maximize the accuracy and effectiveness of concurrency control decisions. The 

main contribution of the model includes: 

•  The development of a hybrid concurrency control approach combines optimistic 

and pessimistic approaches and then dynamically selects the concurrency control 

technique for the corresponding transaction sets using the conflict rate. 

•  The BPNN determines whether to select the optimistic or pessimistic model to 

determine the committed or successful transaction. 

•  The parameters of BPNN are optimized by using the BSSA to enhance the 

performance and efficiency of the model. 

•Evaluations are performed in a small bank model of transaction processing in 

which the optimistic or pessimistic approach is selected for the customer and 

internal bank transactions. 
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1.5. THESIS ORGANIZATION 

   The thesis chapters are outlined as: 

 Chapter 1 gives an introduction to the motivation behind the research . It also 

elaborates on the problem description. The objectives from research and 

contribution of research . 

 

Chapter 2  gives an introduction to the distributed database management systems 

are explained in detail. It also includes the concepts, characteristics and types of 

DDBMS. It also elaborates on the DTP, and ACID properties along with the 

concurrency control problems, and strategies. The existing research based on the 

DTP, concurrency control methods and hybrid concurrency control methods along 

with the inference and limitations are discussed. also  discusses the Design of 

concurrency control in DDBMS. It includes algorithms of distributed concurrency 

control, the structure of a distributed transaction, and modeling of DDBMS and 

concurrency control protocols for the DDBMS model. 

Chapter 3 gives an overview of the methodology of the hybrid concurrency 

control. The methodology includes transaction management, back propagation 

neural network (BPNN) and bear smell search algorithm (BSSA). The integrated 

technique BPNN- BSSA for the hybrid concurrency control model is also 

explained in detail along with the implementation of the model in this chapter. 

Chapter 4 discusses and analyses the results that are obtained from the model. It 

also includes the experimental setup along with the evaluation metrics. The 

performance results are analyzed in this chapter. 

Chapter 5 encompasses a summary discussion, conclusion, and the conclusive 

results derived from the research. Additionally, it integrates potential findings for 

future research, aligning with current demands and requirements. 
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1.6. CHAPTER SUMMARY 

In this chapter, the management of concurrent transactions and their properties of 

consistency and isolation across a distributed environment are briefly explained, 

with a focus on hybrid control methods and a discussion of the models and 

methodologies that have been developed. Recent and current research on 

distributed transaction processing and concurrent control methods has been 

extensively reviewed 
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CHAPTER 2 

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS AND 

DESIGN OF CONCURRENCY CONTROL IN DDBMS 

INTRODUCTION 

The Distributed Database Management Systems have gained a vital importance in 

this interconnected world. It is important to understand the characteristics, 

architecture and various aspects to effectively manage and process data in a 

distributed environment (Diallo et al., 2013). This chapter provides a detailed 

introduction to the various concepts and gives an in-depth exploration of each 

aspect. This chapter discusses the characteristics, types, and ACID properties along 

with transaction processing and management. This research thoroughly illustrates 

the objectives and motivation behind its methodologies. 

This research analyzed hybrid concurrency control techniques which integrated 

optimistic and pessimistic methods for transactions in a distributed database 

(DDB) system. The primary objective of the work is to effectively enhance the 

efficiency and performance of the model. This research also helps in managing the 

transaction and versioning mechanisms which ensure and enhance the concurrency 

control. The research integrates neural network and optimization techniques to 

address the challenges associated with concurrent access to shared resources in a 

database system.  The Hybrid Concurrency Control Technique helps in selecting 

the concurrency approaches and the neural network determines to grant lock for 

winning transactions and finally optimization technique to optimize the parameters 

for better performance of the model with increased efficiency. 

Design of Concurrency Control refers to the design principles and strategies 

involved in implementing concurrency control mechanisms within a DDBMS. 

Concurrency control ensures that multiple users or transactions can access and 

modify shared data simultaneously without causing inconsistencies or violating 

integrity constraints. In DDBMS, where the database is distributed across multiple 

nodes in a network, designing effective concurrency control mechanisms is crucial. 

This involves selecting appropriate algorithms like locking or Timestamp ordering, 

defining transaction management protocols to maintain ACID properties, 

addressing issues of replication and consistency through techniques such as 

distributed locking and commit protocols, specifying isolation levels, 

implementing deadlock detection and resolution mechanisms, optimizing 
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performance to minimize overhead, and tackling challenges such as 

communication overhead, data distribution, fault tolerance, and scalability 

 

2.1. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 

Due to the advanced technologies in database and storage, the company has a 

concentrated database at one mainframe or the computer server connected to the 

internet for worldwide access. This method has a disadvantage in that if anyone's 

site is blocked or goes down, all the connected sites also get blocked from 

accessing the data from the database until the overall system gets back up. To 

address and avoid these problems a centralized database also known as a 

distributed database (DDB) is created. The DDB is a collection of interconnected 

databases which are distributed across a computer network. Distributed Database 

Management System (DDBMS) is a software system which is created to manage, 

maintain and control databases which are physically distributed across multiple 

locations. The DDBMS manages the DDB and provides the access to the user 

(Dinh et al., 2018). The objective of DDBMS is to deliver transparent access to 

data along with data integrity, consistency and availability.  

The data are distributed in multiple locations which are influenced by factors like 

geographical dispersion of organization, data replication for fault tolerance and 

requirements for performance. DDBMS is used to handle and analyze data within 

the distributed settings. The database also provides a transparent and unified view 

of data, which allows the users and applications to access, maintain and manipulate 

the data which are stored in a single and centralized database. The DDBMS 

integrates various methods and techniques such as data fragmentation, replication, 

distributed transaction management, concurrency management control and query 

processing in distributed systems (Gharaibeh et al., 2017). The methods are used to 

enhance and ensure the integrity and consistency of data. This is also used to 

handle limitations in distributed environments namely network failures, site 

failures and concurrent access to data. 
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2.1.1. Characteristics of Distributed Databases 

The DDB has several Characteristics which are used to understand, implement and 

manage the DDBMS (Coronel et al., 2019). The main characteristics are as 

follows: 

1. Data Distribution: the data is physically dissipated across various sites or 

nodes within a computer network rather than centralized as a single 

database. The data distribution means that the data is partitioned and stored 

in different locations. 

2. Data Replication: The data can be duplicated (replicated) across various sites 

which improves the scalability, availability and reliability. This method also 

ensures if one site fails or gets down, the data can be accessed from other 

sites. 

3. Fragmentation: The data in DDB can be partitioned into smaller units or 

fragmented called fragments. These fragments can be either horizontally or 

vertically distributed across the systems or sites based on the performance, 

usage patterns and security requirements. 

4. Transparency: this refers to the ability to hide the complexities of the data 

distribution and fragmentation details from the users and application. 

5. Heterogeneity: the database can be heterogeneous, which can integrate 

different types of database management systems (DBMS) and data models. 

This method allows the users to leverage the existing models and 

technologies. 

6. Distributed Transaction Processing: To maintain the ACID properties across 

multiple sites, the transactions in a DDB require a specialized protocol like a 

two-phase commit (2PC) or a three-phase commit (3PC), this processing is 

called distributed processing. 

7. Fault Tolerance: The DDB is designed to handle failures like site failures, 

network failures or communication failures. To ensure fault tolerance 

techniques like data replication, failover mechanisms and recovery 

procedures are developed. 

8. Performance and Scalability: By processing and distributing the data across 

multiple sites, DDB can enhance and improve performance and scalability 

by leveraging parallel processing and load-balancing techniques. 

9. Data Communication cost: Effective management of data communication 

costs involves optimizing network resources, minimizing data transfer, 

ensuring efficient communication protocols and prioritising critical data. 
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10.  Reliability: Reliability refers to the DDB consistently and accurately 

storing, retrieving and processing data despite various failures. High 

reliability in DDB involves implementing robust fault-tolerance mechanisms 

and maintaining redundant copies of data. 

2.1.2. DDBMS Architecture 

The architecture of DDBMS comprises various components and layers to manage 

and process the data across the distributed environment. There are various methods 

for dividing the functionality among various processes related to DDBMS 

(Abdelhafiz et al., 2020). The architecture of DDBMS includes Client/server 

systems, Collaborating server systems and middleware systems. 

CLIENT/SERVER SYSTEMS: 

A client/server system has one or more servers and one or more client processes, in 

which the user can send a request or a query to any server for processing. The user 

interfaces or applications that interact with the DDBMS for performing data-

related operations such as updating, querying and retrieving information are 

processed in the client system. Database server manages retrieval, data storage and 

processing tasks. The server systems also handle the request from the client, 

coordinate communication with other components and execute database operations 

in DDBMS architecture (Özsu et al., 1999). The Client/server system consists of a 

number of clients and a few servers connected to the network. The client can send 

a request/query to any one server. This architecture is easy to implement and 

executes the process. 
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Figure 2.1 represents the architecture of a Client/server with two clients and a 

server connected through a network. 

 

 

Figure 2.1 Client/server architecture 

 

There are three different client/server architectural approaches, they are: 

1. Two-Tier Client/Server Architecture  

2. Three-Tier Client/Server Architecture  

3. Multi-Tier Client/Server Architecture 

2.1.2.1 Two-Tier Client/Server Architecture: 

In the two-tier architecture, the model is classified into two main components such 

as the client and the server. The two-tier architecture process is similar to the 

Client/server application where the client manages the application's logic and user 

interface and the server manages the queries and processing tasks. The main 

features of this architecture include that the model is easy to implement (Ali et al., 

2020). Since the model has direct communication between the client and the server 

the performance of the system is also enhanced. 
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Figure 2.2 Two-Tier Client/Server Architecture 

 

Figure 2.2 represents the Two-Tier Client/Server Architecture, which includes the 

Client Tier and Database Tier 

2.1.2.2 Three-Tier Client/Server Architecture: 

In the three-tier architecture, a middleware or the application server layer is 

integrated between the server and the client layer. The middleware is considered to 

be the intermediary between the client and the server which helps in handling tasks 

including communication management, task processing and task execution. The 

main advantage of the middleware layers is that the layer can distribute client 

requests across multiple servers which enables load balancing and enhances 

resource utilization (Abba et al., 2020). Figure 2.3 illustrates the architecture of a 

Three-tier client/ server. 
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Figure 2.3 Three-Tier Client/Server Architecture 

 

2.1.2.3Multi-Tier Client/Server Architecture: 

The multi-tier architecture includes adding additional layers or tiers to the model to 

accommodate the complex requirements of the application to execute the process. 

The additional layers may include cache servers, security servers and messaging 

servers (Olivares-Rojas et al., 2020). This model provides a flexible and scalable 

framework to improve the performance and to support diverse computing 

environments. 
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2.1.3. Types of DDBMS 

In distributed systems, data is spread across various database systems within an 

organization. These database systems are interconnected through communication 

links, facilitating access to the data for end-users. The DDBMS types are classified 

as, 

1. Homogenous DDBMS 

2. Heterogeneous DDBM 

1.Homogenous DDBMS: 

Homogenous database systems operate on the same operating system, utilize the 

same application processes, and employ similar hardware devices. Each site/query 

runs the same type of DDBMS, ensuring uniformity across the distributed 

environment (Mahajan et al., 2023). Homogeneous DDBMS encompass 

Autonomous and Non-Autonomous subtypes. 

i.  Autonomous DDB: In Autonomous DDB, Each DDBMS operates 

autonomously, exchanging messages to facilitate the sharing of data updates. 

ii.  Non-Autonomous DDB: In Non-Autonomous DDB, a primary DDBMS 

manages database access and updates across the nodes. 

2. Heterogeneous DDBMS:   

Heterogeneous distributed database systems typically operate across diverse 

operating systems, employ varying application procedures, and utilize different 

hardware devices. Each site/query may run in different DDBMSs, including 

various relational database management systems (RDBMSs) or even non-relational 

DBMSs (Zhang et al., 2023). This means that different DDBMSs are employed at 

each node within the system. Heterogeneous DDBMS encompass Systems and 

Gateways as subtypes. 

 

i.      Systems : This provides support for either some or all of the functions within 

a single logical database. Systems are further classified as Full DBMS 

functionality and Partial-multi database. 

1.Full DBMS functionality: It encompasses all functionalities typically found in a 

distributed database. 
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2.Partial-multi database: It provides support for certain functionalities of a 

distributed database. Partial-multi databases are further classified into federated 

Distributed Database and unfederated Distributed Database. 

3.Federated Distributed Database: Facilitates the utilization of local databases to 

fulfill specific data requirements. This can be again classified as loose integration 

and tight integration. 

a. Loose integration: In loose integration, various schemas are present for each 

local database, requiring interaction between each local DBMS and all local 

schemas. 

b. Tight integration: A global schema exists and outlines the entire data 

encompassing all local databases. 

4. Unfederated Distributed Database: All access needs to be routed via a 

centrally located coordinating module. 

ii.  Gateways: direct connections of simple paths are created to other databases, by 

lacking the advantages of one logical database. The types of distributed DDBMS 

are depicted in Figure 2.4. 

 

 

Figure 2.4 Types of DDBMS 
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2.1.4. Distributed Transaction Processing (DTP) 

DTP refers to the management and coordination of transactions that span multiple 

nodes, sites or queries in a distributed computing environment. A transaction refers 

to a logical unit which consists of one or more database operations including write, 

read or update.  In distributed systems, a transaction involves modifying and 

accessing data that are stored in different databases across different locations 

across the network (Taft et al., 2014). The components in DTP include, 

1.Transaction Manager: This is liable for correlating the execution of distributed 

transactions. This method also ensures that transactions follow ACID properties. 

The transaction manager initiates and monitors transactions, manages the state 

information of the transactions and coordinates with the resource manager present 

at each node.  

2.Resource manager:  The resources including databases, files and services are 

managed by the resources manager in the distributed transactions. Each resource 

manager is connected to the local database or resources, which are responsible for 

executing transactional operations on those resources. This also ensures that the 

transactional changes are committed or rolled back consistently across all 

resources. 

3.Concurrency Control: Concurrency controls are employed to manage 

concurrent access to shared data by multiple transactions. This method includes 

techniques like locking and timestamp ordering which prevents data 

inconsistencies and ensures that the transactions are done consistently (Dickerson 

et al., 2017). 

4.Deadlock Detection and Resolution: DTP systems employ deadlock detection 

algorithms to identify and resolve deadlocks that occur when transactions wait 

indefinitely for resources held by other transactions. The technique for deadlock 

resolution includes techniques like deadlock detection with timeouts or deadlock 

prevention strategies. This method also helps to mitigate the impact of deadlocks 

on system performance. DTP enables applications to perform complex 

transactional operations across the distributed environment along with data 

integrity, consistency and reliability in the distributed computing environments. 
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2.1.5. ACID (Atomicity, Consistency, Isolation, Durability) 

Properties of Transactions 

The ACID properties are the set of four characteristics which ensure the reliability 

and consistency of transactions in database systems. 

Atomicity: atomicity ensures that a transaction is treated as a single logical unit of 

work. Either all of the transactions are completed successfully or all the 

transactions are aborted. If any of the systems fail due to an error and system crash, 

the entire transaction is rolled back to its initial state (Lotfy et al., 2016). This 

atomicity property ensures the consistent state of the database. 

Consistency: this is considered to be a vital property which ensures the consistent 

state for each database instance. This also assures that the database remains in a 

valid state before or after the execution. Each transaction must maintain the data 

integrity, data validity and constraints that are given by the schema (Xia et al., 

2016). If any transaction ignores the rules or constraints, the transaction will be 

aborted and the database will be reverted to the previous consistent state. 

Isolation: The isolation property guarantees that transactions execute 

independently of each other without interference. Each transaction operates in 

isolation from others until the completion of the transaction. This also assures that 

the intermediate results of the transactions are not visible or accessible to other 

transactions. Isolation levels such as read committed, read uncommitted and 

repeatable read provide different levels of isolation to control the visibility and 

accessibility of data among the transactions. 

Durability: Durability ensures that the committed transactions persist even when 

the system fails or crashes. Once the transactions are completed and committed 

successfully the changes are saved permanently which cannot be lost due to 

hardware failures, system crashes or power failures (Chittayasothorn 2022). These 

changes are typically recorded in non-volatile storage to ensure durability. 

The ACID properties ensure that the database transactions are executed reliably, 

and consistently which enhances the data integrity and isolation even in the system 

failure or errors. This helps to build robust and transactional consistent database 

systems. 
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2.1.6.Transaction Management applications 

Transaction management applications in DDBMS involve handling transactions 

that span multiple nodes or sites within a distributed computing environment 

(Muslihah et al., 2020). The common transaction management applications in 

DDBMS include, 

1. E-commerce Platforms: E-commerce Platforms facilitate transactions 

between buyers and sellers over the Internet. The transaction details such as 

placing orders, inventory updates, payment processing and generating 

invoices involve interacting with a distributed database that stores product 

details and transaction records. 

2. Supply Chain Management: Supply Chain Management correlates the 

flow of goods, information and finances across a distributed network 

between the suppliers and manufacturers. The transaction details like 

processing and management require access to DDB at different points in the 

supply chain.  

3. Enterprise Resource Planning (ERP): An ERP system combines multiple 

business functions such as finance, human resources, manufacturing, and 

sales into a unified platform. Transactions in ERP systems involve activities 

such as processing purchase orders, generating invoices, recording payroll, 

and managing inventory, which may extend to multiple departments or 

locations within an organization. 

Transaction management mechanisms such as distributed concurrency control, 

distributed deadlock detection, and distributed recovery protocols are employed to 

coordinate and manage transactions effectively across distributed databases. 

2.1.7.Concurrency Control Problem 

A database system operates with high concurrency, and increases the conflicts, 

particularly when two concurrent transactions attempt to update the same data 

simultaneously. If only one transaction were allowed to execute at any given time, 

operations would proceed sequentially without issue (Harding et al., 2017). 

However, challenges arise when multiple transactions are updated to the same 

database item concurrently, while still upholding data consistency. The 

concurrency problem arises due to the following factors, 

1. Data Inconsistency: Concurrent execution of transactions can lead to data 

inconsistency if transactions read and write data simultaneously without 
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proper coordination. For example, if two transactions read the same data 

concurrently and perform conflicting updates, this results in an inconsistent 

state of the database. 

2. Lost Updates: When several transactions endeavour to modify the same 

data simultaneously, loss of updates can occur, where one transaction's 

changes overwrite another transaction's changes without being properly 

reflected. This can lead to the loss of valuable data modifications and 

compromise data integrity. 

3. Uncommitted Data: Transactions may read intermediate or uncommitted 

data produced by other transactions, leading to inconsistent or incorrect 

results. This phenomenon, known as dirty reads, this situation arises when a 

transaction accesses data that has been altered by another transaction but 

hasn't been finalized or committed. 

4. Concurrency Anomalies: Concurrent execution of transactions can result in 

various concurrency anomalies such as dirty reads, non-repeatable reads, and 

phantom reads. These anomalies occur due to the interleaving of transaction 

operations and can lead to unexpected or incorrect query results. 

5. Deadlocks: Concurrent transactions may compete for resources, leading to 

deadlock situations where transactions wait indefinitely for resources held 

by other transactions (Neumann et al., 2015). Deadlocks can result in system 

performance degradation and deadlock resolution overhead. 

 

2.1.8.Concurrency Control Strategies 

Concurrency control strategies are techniques employed in database management 

systems to ensure that transactions execute in a controlled manner, minimizing the 

risk of data inconsistency and preserving data integrity in a multi-user 

environment. This method also ensures that transactions execute safely and 

efficiently in a multi-user environment (Al-Qerem et al., 2020). The concurrency 

control strategy depends upon factors such as system requirements, transaction 

workloads and characteristics along with the performance. The concurrency control 

strategies are classified into: 

1. Optimistic Concurrency Control 

2. Pessimistic Concurrency Control 

3. Hybrid Concurrency Control 
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Optimistic Concurrency Control (OCC): allows transactions to execute without 

initially obtaining locks. Instead, it detects conflicts at the time of transaction 

commit. Transactions record their read and write sets during execution (Jepsen et 

al., 2018). At commit time, conflicts are checked, and the transaction is either 

committed or aborted based on the presence of conflicts. 

The optimistic approach defers the checking of concurrency constraints, such as 

ensuring transaction isolation and other integrity rules like serializability and 

recoverability, until the transaction's completion. This method avoids blocking 

transactional operations and only aborts the transaction if it violates the desired 

rules upon committing. When a transaction is aborted, it is promptly restarted and 

re-executed, which does entail some overhead. However, in a multiuser transaction 

environment where relatively few transactions are aborted, the optimistic 

mechanism proves to be effective in achieving its intended purpose. Optimistic 

concurrency control is well-suited for environments where conflicts are infrequent, 

such as read-heavy workloads or scenarios with low contention for resources 

(Bernstein et al., 2015). It avoids the overhead associated with locking and can 

lead to improved throughput and reduced contention. Optimistic concurrency 

control offers a balance between ensuring data consistency and maximizing 

concurrency, making it a valuable strategy in many database systems, particularly 

those with high read/write ratios.  

Pessimistic Concurrency Control (PCC): PCC is a strategy used in database 

management systems to ensure transaction isolation and maintain data consistency 

by pessimistically assuming that conflicts will occur and taking preemptive 

measures to prevent the conflicts. Pessimistic Concurrency Control provides a 

conservative approach to concurrency management. While it ensures transaction 

isolation and data consistency, it can lead to increased contention and reduced 

concurrency, especially in environments with high transaction rates.  

Pessimistic concurrency control is executed via locking. Once a transaction 

acquires a lock on a data object, it remains locked, preventing other transactions 

waiting for the same data object from accessing it. Only when the transaction that 

initially obtained the lock releases it can other transactions acquire the lock on the 

same data object. In the pessimistic locking method, data scheduled for updates is 

preemptively locked. Once locked, the application can proceed with the 

modifications, and then either commit or rollback the transaction, which 

automatically releases the lock (Chaudhry et al., 2022). If another transaction tries 
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to obtain a lock during this process on the same data, it will be compelled to 

wait/queue until the first transaction concludes. This method involves acquiring a 

write lock on the object, executing its operations, copying the updates, and 

subsequently releasing the lock on the object. This approach operates on the 

assumption that another transaction may alter the data between the read and the 

update. To avoid such changes and data inconsistency, the read statement secures 

the data, preventing any alteration by other transactions. 

Hybrid Concurrency Control: Hybrid concurrency control techniques have 

emerged as a promising solution for transaction processing in distributed database 

systems. These techniques aim to integrate the benefits of optimistic and 

pessimistic concurrency control strategies. The hybrid approach is the adaptive 

concurrency control, which dynamically adjusts its concurrency control strategy 

based on the current workload characteristics and system conditions. This monitors 

various parameters such as transaction arrival rates, data contention levels, and 

system resource utilization (Stephan et al., 2017). Based on these parameters, it 

adapts its concurrency control strategy, employing either optimistic or pessimistic 

techniques as appropriate. This adaptive approach aims to provide the best 

performance and concurrency levels by tailoring the concurrency control 

mechanism to the prevailing workload conditions. 

1.  Pessimistic Component: In the hybrid concurrency control approach, specific 

transactions may utilize a pessimistic locking strategy to ensure access to critical 

data. Pessimistic locking is typically used for transactions that involve highly 

sensitive or frequently accessed data, where the risk of conflicts and contention is 

high (Wu et al., 2017). Pessimistic concurrency control maintains transaction 

isolation reduces the chances of conflicts by obtaining locks on data items in 

advance, and prevents concurrent transactions from accessing or modifying the 

same data simultaneously. 

2.  Optimistic Component: Optimistic concurrency control is often employed for 

transactions that involve less critical or less frequently accessed data, where 

conflicts are less likely to occur. Instead of acquiring locks preemptively, 

optimistic concurrency control mechanisms rely on conflict detection and 

resolution mechanisms to address conflicts at the time of transaction commitment 

(Wei et al., 2018). If conflicts are detected during the commit, the transaction may 

be aborted and restarted to ensure data consistency. 
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3.  Dynamic Selection: The decision to use pessimistic or optimistic concurrency 

control for a particular transaction may be dynamically determined based on 

factors such as transaction characteristics, data access patterns, and system 

workload. Transaction scheduling algorithms or policies may be employed to 

analyze transaction requirements and select the most appropriate concurrency 

control strategy for each transaction dynamically. 

For example, transactions accessing critical or highly contended data may be 

assigned pessimistic locking, while transactions accessing less critical or less 

contended data may be assigned optimistic concurrency control. 

The main advantage of Hybrid concurrency control is flexibility and adaptability 

which allows database administrators or developers to tailor concurrency control 

strategies to the specific needs and characteristics of their applications and 

environments. This method integrates the strengths of pessimistic and optimistic 

concurrency control, the hybrid approach can provide improved performance, 

scalability, and resource utilization in database systems with diverse transaction 

workloads and access patterns. 
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A BENEFITS AND LIMITATIONS OF HYBRID CONCURRENCY 

CONTROL MODEL FOR TRANSACTION PROCESSING 

BENEFITS LIMITATIONS 

1. It combines benefits of both optimistic 

and pessimistic methods to optimize 

performance and ensure data 

consistency 

 

 

2. Transactions are initially executed 

optimistically, allowing them to 

proceed without acquiring locks 

 

 

 

3. the system monitors for potential 

conflicts using techniques such as 

validation checks or versioning 

mechanisms 

 

4. . If conflicts are detected, the system 

switches to a pessimistic mode, where 

transactions acquire locks on data 

items 

1. Integrating the Multiple concurrency 

control mechanism without increasing 

the complexity of the system is the 

primary challenge in hybrid 

concurrency control. 

 

2. Coordinating various approaches in a 

highly concurrent environment 

increases the synchronization 

overhead and degrades the consistency  

 

3. The model adds to space complexity 

by storing multiple types of 

information, including transaction 

status and details, within the system. 

 

4.  exhibit limitations such as high abort 

rates, long execution times, and 

scalability issues. 

 

 

Table 2.1 benefits and limitations of hybrid concurrency control model 

 

2.2. LITERATURE REVIEW 
 

The increasing application and effectiveness of the Hybrid Concurrency 

Control Technique for Transaction Processing in Distributed Database 

Systems have propelled the IT industry towards a modern computing model. 

While Hybrid Concurrency Control has a huge volume of potential, it also 

has a lot of challenges to overcome. This chapter discusses the recent 

research works on Distributed Transaction Processing, Concurrency Control 

Methods and Hybrid Concurrency Control Methods to upgrade the 

distributed database environment. 
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2.2.1. Distributed Transaction Processing 
 

This section of the research model concentrates on conducting a 

comprehensive examination of different Distributed Transaction Processing 

methods as well as identifying the limitations present within the system. 

 

1. Yao et al., (2018) presented a novel concurrency control protocol called 

Distributed Dependency Graph Concurrency Control (DistDGCC) and a 

new logging technique called Dependency Logging for distributed in-

memory OLTP systems. DistDGCC processed transactions in batches 

resolved dependencies and built dependency graphs before execution, 

reducing aborts and thread blocking. Dependency Logging exploited the 

dependency graphs constructed by DistDGCC for efficient logging and 

parallel recovery. Two variants are proposed, fine-grained and coarse-

grained Dependency Logging, trading off between log size and recovery 

parallelism. DistDGCC constructed dependency graphs in parallel, 

resolving intra- and inter-transaction dependencies for local and 

distributed transactions. Dependency Logging transforms these graphs 

into log records with dependency information. Experiments on YCSB and 

TPC-C showed that DistDGCC outperformed 2PL and OCC in throughput 

and latency with distributed transactions and dependency Logging 

achieved higher runtime performance and faster recovery than ARIES 

logging. Yet, the model lacked balance to log granularity and recovery 

parallelism. 

 

2. Lokhande et al., (2019) proposed an innovative method for ensuring 

secure, energy-efficient, and scalable transaction management within 

heterogeneous distributed real-time replicated database systems. This 

model incorporates several components, including workload 

characterization utilizing K-means clustering, resource allocation 

facilitated by the provision of virtual machines, and the implementation of 

security measures through encryption and decryption of user data. The k-

means clustering algorithm is used for workload characterization and task 

classification, and Amazon AWS services like EC2, DynamoDB (cloud 

database), and S3 are utilized for resource allocation and data storage. 

AES algorithm is used for encryption and decryption of user data to 

ensure security. The performance of the proposed system is evaluated 
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based on parameters like throughput, CPU utilization, energy efficiency, 

scheduling time, and response time. The model provided secure data 

storage and transaction management in cloud environments. Yet, the 

model lacked a clustering technique for workload characteristics. 

 

 

3. Dong et al., (2020) presented a new concurrency control protocol called 

Deterministic and Optimistic Concurrency Control (DOCC) for 

deterministic databases. DOCC allowed the optimistic execution of 

transactions and enforced determinism lazily, improving scalability within 

a single node. It used multi-version snapshots to prevent read-only 

transactions from blocking execution and employed data prefetching to 

speed up transaction retries. The model evaluated DOCC using the TPC-C 

on an 8-node cluster and showed that DOCC outperformed the popular 

deterministic database Calvin by 4.31x to 8.46x under low and high 

contention scenarios, respectively. DOCC achieved better performance by 

exploiting parallelism opportunities and reduced overhead from 

deterministic locking. The advantages of DOCC include improved 

scalability, better performance under contention, and increased generality. 

However, the paper does not address the potential scalability issue of the 

sequencer component in a larger distributed setting. 

 

4. Dizdarevic et al., (2021) presented a novel approach called Rose Tree 

Based Consistency/Rose Tree Algorithm (R-TBC/RTA) for managing 

consistency in highly-distributed transactional databases in a hybrid cloud 

environment. The model proposed a visible adaptive consistency model 

and the R-TBC/RTA approach based on Bayesian hierarchical clustering 

and Graph Partitioning Algorithm (GPA-BHC) for intelligent partitioning 

of the cloud database. Constructing the R-TBC tree using the Rose Tree 

Algorithm (RTA) and distributing database partitions across the tree 

structure based on PEM (Performance, Efficiency, and Manageability) 

metrics. Experimental validation of the R-TBC/RTA approach 

demonstrated improved response time, reduced inconsistency window, 

and better load balancing. The study is limited to a specific scenario for 

energy sector companies. 
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5. Yamada et al., (2022) introduced Scalar DL, a middleware designed for 

transactional database systems to detect Byzantine faults (BFD). Scalar 

DL enabled the concurrent execution of non-conflicting transactions while 

maintaining strict serializability. The process involves three phases 

ordering, committing, and validation, which occur between a primary and 

secondary server situated in distinct administrative domains. In 

comparative evaluations, Scalar DL surpassed the other BFD approach by 

a factor ranging from 3.5 to 10.6 times in terms of throughput. Scalar DL 

exhibited effective performance across various database implementations. 

Moreover, it demonstrated near-linear scalability of 91% with an increase 

in the number of nodes composing each replica. However, it's worth 

noting that Scalar DL is limited to supporting only two administrative 

domains. 

 

6. Ali et al., (2022) presented a practical framework for creating a Proxy 

Database to prevent direct access to distributed transaction databases and 

ensure information security. The proposed approach entails establishing a 

Proxy Database comprising a collection of proxy tables and views sourced 

from various relational distributed databases operating across different 

domains within an organization. The model created proxy tables that 

provide roundabout access to data in distributed tables, maintaining 

location transparency, and mapping proxy tables with local distributed 

tables and views. It submitted queries on proxy tables, which are 

decomposed into sub-queries and executed on respective local databases, 

with results composed and returned. The model handled local database 

structure differences and propagating changes to the Proxy Database to 

maintain consistency and implemented a software firewall for network 

security, with the Proxy Database Server and local databases behind the 

firewall.  The advantages include improved security, location 

transparency, and efficient data retrieval through a single query across 

multiple databases. However, the document does not provide a detailed 

analysis of query processing, optimization techniques, or performance 

evaluation. 

 

7. Diop et al., (2022) proposed a DDSampling algorithm for randomly 

drawing patterns from a transactional distributed database, with 

probability proportional to an interestingness measure combining 
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frequency and length-based utility functions. The model utilized a 

decentralized approach which avoids centralizing the entire database by 

just centralizing the lengths of transaction parts from each fragment and 

the pre-processing phase computes a weight matrix M containing the 

lengths of each transaction in each fragment. The pattern drawing phase 

used M to randomly draw a transaction identifier based on weight, and a 

length based on weight and then samples a pattern of length from the 

transaction identifier. The experiments evaluated DDSampling on 

datasets, showed its lower communication cost compared to 

centralization, and its robustness against node failures. Yet, the model only 

analysed communication cost, without detailed results on computational 

efficiency. 

 

 

8. Shen et al., (2022) presented DrTM+B, a dynamic live reconfiguration 

method designed for distributed transaction processing systems. DrTM+B 

utilized a pre-copy-based mechanism to minimize performance disruption 

during live reconfiguration processes. It leveraged common features found 

in modern transactional systems, such as data replication for fault 

tolerance, DrTM+B and reduced data transfer and downtime. The system 

employed a cooperative commit protocol to synchronize data and state 

among replicas, ensuring consistency. Additionally, DrTM+B introduced a 

hybrid copy scheme that combines pre-copy and post-copy approaches to 

enhance performance during data migration. Evaluation of a functional 

system based on DrTM+R with 3-way replication, using TPC-C and 

SmallBank workloads, indicates that DrTM+B experiences only minor 

performance degradation during live reconfiguration while maintaining 

high availability. Furthermore, reconfiguration time and downtime are 

kept minimal. 

 

9. Pan et al., (2023) presented a novel and practical atomic commit protocol 

called Failure-Aware Atomic Commit (FLAC) for distributed transaction 

processing. The model used a robustness-level state machine (RLSM) to 

monitor the operating environment and dynamically switch to the most 

suitable protocol. RLSM's parameters are fine-tuned by reinforcement 

learning to adapt to unstable environments. The experimental results 

showed that FLAC achieved up to 2.22x throughput improvement and 
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2.82x latency speedup compared to existing protocols in high-contention 

workloads. The limitations include higher message complexity when 

transactions involve many participants and potential liveness. 

 

 

10. Bharati et al., (2023) presented a novel hybrid graph partitioning and 

optimized load-balancing approach for scalable distributed transactions. 

Hybrid Graph Partitioning (HGP) combines vertical and graph 

partitioning to effectively partition data based on related content. The 

optimized Load Balancing (OLB) approach calculated the weight factor, 

average workload, and partition efficiency and balanced the load across 

partitions. The proposed approach is evaluated using the TPC-E OLTP 

benchmark dataset. Performance metrics like throughput, response time, 

distributed transactions, and CPU utilization are analysed.  The results 

showed significant improvement over existing approaches like schema-

level partitioning, scalable partitioning, and graph partitioning. Effective 

data partitioning with related data items improved transaction processing 

and optimized load balancing which enhanced performance for increasing 

workloads. Yet, the model lacked handling skewed data distributions. 

 

11. Zhang et al., (2023) proposed RedT, a novel distributed transaction 

processing protocol for heterogeneous networks RDMA within data 

centres and TCP/IP across data centres. The model used a pre-write-log 

mechanism and reduced inter-data-centre round-trips from 6 to 2 and 

extended sub-transactions from replica granularity to data centre 

granularity, leveraging RDMA for intra-data-centre communication. The 

model evaluated on YCSB and TPC-C benchmarks showed RedT and 

achieved up to 1.57x higher throughput and 0.56x low latency. However, 

RDMA currently limited to local area networks, may not scale to wide 

area networks. 

 

 

12. Poudel et al., (2024) introduced offline algorithms such as OFFEXEC, 

designed for optimal execution time, and OFFCOMM, aimed at achieving 

2-competitive communication costs. The model also proposed both partial 

and fully dynamic algorithms to optimize both execution time and 

communication costs within distributed transactional memory systems. 
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These algorithms were developed to provide efficient solutions for 

ordered scheduling. The efficacy of these algorithms was assessed through 

rigorous analysis and validation via various benchmarks applied to 

random and grid graphs. The model evaluated the ordered scheduling 

challenges inherent in committing transactions based on predefined 

priorities within the control-flow distributed transactional memory model. 

However, the model concentrates on the control-flow model and the 

results may not extend to other models. 

 

13. Weng et al., (2024) presented Lauca, a workload replicator that generates 

synthetic workloads for benchmarking transactional database 

performance. The model introduced Transaction Logic, Data Access 

Distribution, and Partition Access Distribution to characterize the runtime 

workload attributes of OLTP applications. The model also proposed 

algorithms to synthesize workloads and data, ensuring similarity in 

execution semantics between synthetic and real application workloads. 

Transaction Logic captured transaction structure and parameter 

dependencies, data Access Distribution models skewed, dynamic, and 

continuous data access patterns and partition Access Distribution controls 

distributed transaction ratios for distributed databases. Extensive 

experiments on centralized (MySQL) and distributed (TiDB, OceanBase) 

databases showed that Lauca consistently generated high-quality synthetic 

workloads. Yet, the model Parameter dependencies in Transaction Logic 

are not exhaustively defined. 

 

 

14. Kniep et al., (2024) introduced Pilotfish, the first distributed execution 

engine for blockchains that can scale out by leveraging multiple machines 

and executionWorkers under the control of each validator node. The 

methods utilized are a protocol to efficiently fetch transactions from 

SequencingWorkers and dispatch them to appropriate ExecutionWorkers. 

An efficient memory-storage interface to handle partial crash recovery 

across workers A novel versioned-queue scheduling algorithm to support 

dynamic reads/writes while allowing concurrent execution. The results 

showed that for compute-intensive workloads, Pilotfish achieved linear 

scalability in throughput as more ExecutionWorkers were added, reaching 
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up to 8x higher throughput. The model limitations include slightly 

sublinear scalability for non-compute-bound workloads. 

 

15. Nikolić et al., (2024) presented the Service Proxy Transaction 

Management (SPTM) approach for providing scalable reads and ACID 

transactions in microservice architectures (MSA). The model used 

inbound messages to services for transaction management, making it 

transparent to services and also utilized Multi-Version Concurrency 

Control (MVCC) with timestamp ordering for concurrency control. The 

model implemented a transaction manager called fed-agent based on the 

SPTM approach. The results showed that the fed agent outperforms 2PC 

by up to a factor of 2 in low-medium contention scenarios and provided 

high consistency. However, limitations include performance degradation 

in high contention scenarios and the potential for a high number of 

aborted transactions. 

 

2.2.2. Concurrency Control Methods 
 

In this part, the research model focuses on concurrency control methods and 

limitations that exist in the system. 

 

1. Sheikhan et al., (2013) presented a neural-based concurrency control 

(NCC) method for database systems. The approach utilized the Adaptive 

Resonance Theory 2 (ART2) neural network to compute a health factor 

(HF) for transactions, aiding in determining the winning transaction when 

accessing database objects. Additionally, it factored in the optional 

knowledge of readset (RS) and writeset (WS) before transaction 

execution. Training the ART2 neural network involved transaction 

features such as RS, WS, and user priority. HF was derived based on the 

transaction and abort counts within each cluster generated by ART2, while 

the NCC algorithm utilized HF or transaction effectiveness (TE) to select 

the winning transaction. As a result, the model yielded 1954 aborts and an 

execution time of 46745 seconds for 1000 transactions. The proposed 

model demonstrated enhanced concurrency and performance by notably 

reducing aborts. Yet the model performance improvement depends on 

transaction rate and RS/WS knowledge and considers only serializability 

criteria, not other correctness criteria. 
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2. Ramesh et al., (2015) presented a Hash-Based Incremental Optimistic 

Concurrency Control (HBOCC) algorithm for distributed databases. The 

approach implemented optimistic concurrency control within the 

distributed database model. It addressed transaction conflicts by 

employing the MD5 hashing algorithm to compute hash values for data 

items before write operations. By comparing the current and previous 

hash values, the model detected modifications made by concurrent 

transactions, aiming to prevent unnecessary transaction restarts. This was 

achieved by updating hash values and retrying the transaction. The model 

yielded an execution time of 151 seconds for 1000 transactions. Findings 

indicated that the HBOCC model exhibited reduced space complexity and 

demonstrated superior performance, particularly with larger transaction 

volumes. Limitations lacked exploring different hashing algorithms, 

handling hash collisions, and addressing security concerns in distributed 

environments. 

 

3. Neumann et al., (2015) presented a novel multi-version concurrency 

control (MVCC) implementation for main-memory database systems. The 

model enabled efficient execution of both transactional and analytical 

workloads while maintaining serializability guarantees. The method 

involved updating data in-place, storing versions as before-image deltas, 

and using precision locking for serializability validation and retained high 

scan performance using VersionedPositions synopses. The model result 

analysis showed that the MVCC model has overhead compared to single-

version systems, even with serializability. The model outperformed 

existing MVCC implementations and scales well for both OLTP and 

OLAP workloads. However, limitations include false positive aborts for 

minimum/maximum aggregates due to the lack of predicate logging for 

them. 

 

4. Gohil et al., (2016) presented a research study on the development, 

implementation, and performance evaluation of a concurrency control 

algorithm called JAG_TDB_CC, tailored for temporal databases. The 

proposed algorithm combined the advantages of both timestamp and 

locking approaches for concurrency control and utilized Oracle 12c's 

temporal validity support and efficient locking mechanism. The algorithm 



32 
 

prevented conflicting user sessions from acquiring locked resources rather 

than blocking preventing indefinite waiting times. It incorporated a 

System Change Number (SCN) as an extra concurrency parameter for 

condition validation. The results showed a significant reduction in session 

waiting times when compared to both pessimistic and optimistic 

concurrency control techniques. However, the algorithm's application is 

not tested in time-critical real-time database applications. 

 

5. Wang et al., (2016) presented a novel concurrency control scheme called 

Mostly-Optimistic Concurrency Control (MOCC) and enhanced the 

performance of Optimistic Concurrency Control (OCC) for extremely 

competed dynamic workloads on modern servers with thousands of CPU 

cores. MOCC judiciously used pessimistic locking for suitable records to 

prevent clobbered reads in scenarios with high conflict levels, while 

retaining OCC's high performance for low-conflict workloads. MOCC 

also introduced a cancellable reader-writer spinlock, MOCC Multi 

Queuing Lock (MQL), which scales well on deep memory hierarchies 

supports various locking modes and dynamically adjusts itself to optimize 

performance for workloads with varying contention levels and access 

patterns. Experiments on a 288-core server showed that MOCC 

outperformed OCC and pessimistic locking by 8x and 23x, respectively, 

for high conflict YCSB workloads and achieved 17 million TPS for TPC-

C and over 110 million TPS for YCSB without conflicts, 170x faster than 

pessimistic methods. Yet, the MOCC lacked performance in distributed or 

partitioned workloads. 

 

6. Choi et al., (2016) presented a concurrency control method to provide 

transactional processing for cloud data management systems (CDMSs). 

The proposed method is based on Spark, a distributed processing 

framework that operates in-memory the system employs the Resilient 

Distributed Dataset (RDD) model to ensure fault tolerance. The method 

loads the database from the CDMS into distributed main memory as an 

RDD and manages versions of the RDD using multi-version concurrency 

control. Evaluation results showed that the method scales well with the 

number of transactions. The benefits of the proposed approach are its 

ability to be seamlessly incorporated into current CDMSs without 

modification and its scalability.  Yet, the model lacks in overhead of 
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managing multiple versions of RDDs, which may impact performance for 

large datasets. 

 

7. Gohil et al., (2016) presented a study on the implementation of optimistic 

locking and concurrency control for temporal databases using Oracle 12c 

Enterprise Manager. The study creates temporal tables in Oracle 12c and 

implements an optimistic locking mechanism using a trigger. The trigger 

used a Record Change Number (RCN) to control concurrent updates to 

the same row. Multiple user sessions are simulated to perform concurrent 

updates, and the behaviour is observed graphically using Oracle 

Enterprise Manager. The optimistic locking approach allowed conflicting 

transactions to proceed without blocking each other, reducing the risk of 

deadlocks. The session waiting time for conflicting transactions is 

decreased compared to pessimistic locking. The graphical representation 

illustrated the concurrency situations, locking, and unlocking scenarios 

effectively. The study is limited to Oracle 12c and may not be directly 

applicable to other database systems. 

 

8. Mohana et al., (2017) presented a hierarchical replication and 

multiversion concurrency control model for mobile database systems 

(MDS). The methods involve estimating node distance, cluster formation, 

replication, mobility prediction, and concurrency control using version 

numbers and timestamps. The model chooses cluster heads (CHs) by 

considering their distance relative to past node movements to handle 

mobility and disconnections and replicates data from the server to nearby 

CHs on demand or proactively. The model maintained a concurrency table 

at each CH for each replicated data object. The results showed that the 

proposed approach reduced energy consumption and overhead compared 

to a concurrency control mechanism (CCM). It achieved 26% less 

response time, 25% higher throughput, and 76% lower server load without 

mobility. With mobility, it achieves 28% less response time, 16% higher 

throughput, and 64% lower server load. 

 

9. Jun et al., (2018) presented a concurrency control scheme for object-

oriented databases (OODBs). OODBs have complex modeling capabilities 

compared to relational databases, necessitating more intricate concurrency 

control mechanisms that can impact overall performance. The proposed 
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approach addresses the concept of class hierarchy within OODBs and 

operates on an implicit locking scheme. It is specifically designed to 

utilise data access frequency to mitigate locking overhead in comparison 

to implicit locking methods. In cases where access frequency information 

is unavailable, the scheme seamlessly operates similarly to existing 

implicit locking mechanisms. The results demonstrated that the proposed 

scheme outperformed implicit locking. The value of the results lied in 

providing a more efficient concurrency control mechanism for OODBs, 

potentially enhancing overall system performance. Limitations may 

include the need for access frequency information and the complexity of 

handling class hierarchies. 

 

10. Liu et al., (2018) proposed an Adaptive and Speculative Optimistic 

Concurrency Control (ASOCC) protocol for efficient distributed 

transaction processing. The model dynamically adapts between OCC and 

two-phase locking (2PL) based on data access frequency, and 

speculatively restarting transactions early based on correlated data 

accesses. The method classified data as cold (OCC), hot (2PL), and warm 

(speculative restart) based on access patterns. It embedded 2PL into OCC 

for hot data, performs validation and restart for warm data correlated with 

hot data. The speculation strategy saved CPU cycles wasted on 

transactions destined to abort. Performance evaluation on TPC-C 

workloads showed the speculative restart provided up to 35% throughput 

gain for workloads with medium data correlation levels and moderate 

distributed transactions, outperforming priority-based speculation. 

However, the gain diminishes with excessively distributed transactions. 

 

11. Wang et al., (2018) built a model, concurrency-aware model that 

determined nearly optimal soft resource allocation for each tier by 

integrating operational queuing laws with detailed online measurement 

data. A dynamic concurrency management (DCM) framework was 

developed, seamlessly integrating the concurrency-aware model to 

dynamically reallocate soft resources during system scaling. The model 

compared DCM with Amazon EC2-AutoScale using six real-world bursty 

workload traces revealing DCM's prowess in significantly reducing 

latency and increased throughput under all workload traces. During 

system scaling the work highlighted the significance of coordinating 
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software and hardware resources. The proposed DCM framework 

provides an intelligent approach to managing concurrency and improved 

performance during scaling. Limitations include the overhead of the DCM 

framework and its impact on system performance. 

 

12. Ding et al., (2018) presented a framework for enhancing the performance 

of OLTP systems based on OCC utilizing grouping transactions into 

batches and rearranging operations. The model used storage batching to 

reorder transactions performed reads and writes operations at the storage 

layer to reduce conflicts involving identical objects and utilized validator 

batching for reordering transactions before validation to reduce conflicts 

between transactions. Efficient algorithms for transaction reordering based 

on various precedence policies, including reducing tail latency and thread-

aware policies for multi-threaded architectures. Experiments are evaluated 

on a research prototype, an open-source OLTP system, and a production 

OLTP system demonstrated that the proposed techniques can increase 

transaction throughput by up to 2.2x and reduce tail latency by up to 71% 

on workloads with high data contention. The proposed framework 

leveraged the unique opportunities for batching in OCC systems and 

provides a holistic approach to improving performance through 

transaction batching and reordering. It enables the use of OCC with 

higher-contention workloads by reducing conflicts and improving 

throughput and latency. 

 

13. Guo et al., (2019) presented an Adaptive Optimistic Concurrency Control 

(AOCC) for heterogeneous workloads in in-memory database systems. 

The model identified the high cost of validating operations in transactions, 

especially for key-range scan operations and under varying workloads. 

AOCC adaptively chooses low-cost validation schemes based on the 

operation types and workload characteristics at runtime and assigns 

validation methods at the transaction level based on operation features, 

and for each operation, it selects the validation method based on the 

number of accessed records and workload characteristics. The method is 

evaluated through experiments, showing good performance and scalability 

under heterogeneous workloads with point accesses and predicate queries. 

The model doesn’t include specific validation schemes or the adaptation 

mechanisms used in AOCC. 
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14. Mohammad et al., (2019) proposed an improved algorithm called 

Deadlock-Free Cell Lock (DFCL) for database concurrency control. A 

DFCL implements cell-level locking and prioritizes transactions based on 

the number of executed statements when addressing conflicts. 

Additionally, it utilizes triggers to identify and resolve deadlocks by 

aborting the transaction with the least number of executed statements. 

Through simulations, DFCL achieved an average of 1234 committed 

transactions, 266 rolled-back transactions, and an execution time of 3 

seconds. The benefits of DFCL include enhanced concurrency, commit 

rate, throughput, response time, and elimination of deadlocks. However, it 

increases space complexity due to storing the status of each cell and 

transaction details. 

 

15. Nakamura et al., (2019) presented a study on integrating the TicToc 

concurrency control protocol with the parallel write-ahead logging (P-

WAL) protocol. The integration of TicToc with P-WAL, a parallel logging 

protocol designed for non-volatile memory, was employed in the model. 

Four protocols were developed by combining TicToc with P-WAL, each 

with or without ELR and group commit functionalities. These protocols 

were implemented and assessed on multicore systems. The research 

offered significant insights into the obstacles associated with merging 

concurrency control and logging protocols. However, it is limited by the 

use of a simplified database system and storage latency emulation. 

 

16. Al-Qerem et al., (2020) introduced a new optimistic concurrency control 

protocol variant for cloud-fog environments to reduce communication 

overhead to the cloud server. The proposed augmented partial validation 

protocol allows read-only IoT transactions to be processed locally at the 

fog node, while only update transactions requiring final validation are sent 

to the cloud. Update transactions go through partial validation at the fog 

node first, increasing their likelihood of committing at the cloud. This 

reduced cloud computational and communication while supporting 

transactional service scalability for IoT applications. Experiments 

compared the protocols with and without fog node partial validation 

deployment. Results showed reductions in miss rate, restart rate and 

communication delay across all three protocols when using partial 

validation. Communication delay was significantly reduced, enabling fog 
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computing services with low latency to IoT applications that prioritize 

minimizing delays. Limitations include the need for caching to 

compensate for the abort rates introduced by optimistic concurrency 

control. 

 

17. Fan et al., (2020) proposed 2PC*, a novel concurrency control protocol 

for distributed transactions across multiple microservice protocols. The 

model introduced a Secondary Asynchronous Optimistic Lock (SAOL) to 

replace the less efficient synchronous blocking lock, thus reducing 

overhead stemming from transaction surges. Additionally, it employed a 

runtime protocol based on directed graphs to streamline and reorder 

transaction conflicts. Techniques such as TLA+ were utilized for protocol 

correctness verification, while Least Recent Conflict Dependence (LRCD) 

was adopted to simplify transaction conflicts. Furthermore, a middleware 

implementation was developed using Spring-Boot and Netty. As a result, 

the model achieved a response time of 623.2ms and processed 

transactions at a rate of 304.6 per second. The outcomes demonstrated that 

2PC* yielded higher throughput, with 67% lower latency and a superior 

commit rate. However, the model failed to manage unsuccessful 

transactions. 

 

18. Jin et al., (2021) proposed a novel two-phase concurrency control protocol 

to optimize the execution of smart contracts in permissioned blockchain 

systems. The main node processed transactions concurrently through a 

batching OCC protocol that involved transaction reordering. By 

employing a greedy algorithm, the system tackled the Min-Density FVS 

problem to create a transaction dependency graph (TDG) characterized by 

significant parallelism. A graph partitioning algorithm then segmented the 

TDG into sub-graphs, effectively minimizing communication overhead 

while maintaining parallelism. Outcomes demonstrated notable speed 

enhancements for the primary validators, coupled with a substantial 90% 

decrease in communication overhead. The model limitations include the 

NP-hardness of the optimization problems. 

 

19. Liu et al., (2022) proposed a Scatter-Concurrency throughput (SCT) 

model and identified the near-optimal resource allocation for each server. 

The model also integrated concurrency awareness and enhanced the 
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reallocation of soft resources. The experiments are conducted for web 

applications like EC2-autoscaling and Kubernetes HP. The model reduced 

the response fluctuations time in the container-based environments. 

 

20. Masumura et al., (2022) proposed a new concurrency control method 

called Thread Activity Management (TAM) and its adaptive variant 

(AdaTAM) for in-memory database systems. TAM regulated the number 

of active worker threads and reduced contention and cache misses. 

AdaTAM dynamically adjusted the number of active threads based on 

throughput. The model hypothesizes that reducing the number of active 

threads is the primary reason for performance improvement, rather than 

reducing re-conflicting events. Experiments showed that Silo+TAM 

outperformed under high-contention workloads and AdaTAM 

automatically converged to the optimal number of active threads, making 

it suitable for dynamic workloads. The paper does not explore applying 

TAM to other concurrency control protocols. 

 

21. Abduljalil et al., (2022) presented a new secure two-phase locking (2PL) 

real-time concurrency control algorithm (ES2PL) for multilevel secure 

distributed database systems. The proposed ES2PL algorithm introduces a 

secure manager responsible for determining the security level and 

handling transaction processing based on real or virtual locks and version 

data. This method effectively mitigates transaction miss rates, deadlock 

occurrences, unnecessary aborts, and the starvation of long-running 

transactions. Simulation results indicate that ES2PL outperforms existing 

algorithms such as S2PL, E2PL-HP, and RACE in terms of transaction 

miss percentage, rollback frequency, and average number of committed 

transactions. Specifically, the model achieves an average of 930 

committed transactions, 180 rolled-back transactions, and an execution 

time of 3 seconds. The benefits include enhanced concurrency, 

throughput, response time, and overall database performance. 

 

22. Liu et al., (2022) presented Multi-Clock Snapshot Isolation (MCSI), a 

concurrency control mechanism for implementing isolation snapshots in a 

non-volatile memory single-layer (NVM) database. The model used multi-

version storage to guarantee both durability and runtime access while 

maintaining only a single copy of data and employed an efficient 
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generation of snapshots with vector clocks achieved through multi-clock 

transaction timestamp assignment. The method used per-thread 

transaction status arrays in NVM and identified uncommitted versions, 

avoiding the need for centralized components like lock managers. Results 

showed that MCSI's maximum transaction throughput is 101-195% higher 

than PostgreSQL-style concurrency control for the YCSB workloads, and 

25-49% higher for TPC-C workloads. Transaction latency remains stable 

as thread count increases, the MCSI model provided 86.2μs being 65-84% 

lower than the baseline for YCSB and 16-43% lower for TPC-C with 18 

threads. However, the work is limited to snapshot isolation level only. 

 

 

23. Di Sanzo et al., (2022) developed an analytical model to estimate the 

performance effects of different data access patterns, including random 

access, ordered access by all transactions, ordered access by a percentage 

of transactions, and reverse-ordered access. The model's accuracy is 

validated through extensive simulations, achieving a mean absolute 

percentage error of less than 2.2% in the worst case. The findings are 

demonstrated to have practical applications in improving the performance 

of common transactional benchmarks by modifying the data access 

patterns. However, the limitations are the focus on the ETL protocol and 

the assumption of eager transaction aborts. 

 

24. Xia et al., (2023) proposed a deterministic concurrency control approach 

to efficiently execute blockchain transactions in parallel. The approach 

divides transactions into batches to mitigate inter-batch conflicts, thereby 

lessening the burden on proposers. Introducing a two-stage method known 

as DVC aims to establish a partial order with significant parallelism. DVC 

demonstrated an enhancement in speed of up to 5X, showcasing how data 

skewness and transaction cost distributions impact the efficacy of various 

strategies. However, the performance of DVC depends on the 

effectiveness of the RedLS algorithm for vertex colouring. 

 

25. Yadav et al., (2023) presented an architecture called Distributed 

Processing and Concurrency Control in Cloud Databases (DPC2-CD) for 

distributed processing and concurrency control in cloud databases over a 

public cloud environment. The architecture comprised clustered ESX 
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servers, raw disks, storage arrays, and raw Logical Unit Numbers (LUNs). 

To bolster hardware-level security, the architecture incorporated port 

zoning, LUN masking, Raw Device Mapping (RDM), and N_port ID 

virtualization (NPIV). Additionally, it implemented Database-as-a-Service 

(DBaaS) for application-level security via data encryption. The algorithms 

encompassed transaction decomposition based on data items, transaction 

allocation to ESX servers with workload balancing, and a time-stamp-

based distributed locking protocol (TS-DLP) for concurrency control and 

the release of locks upon commit. The model yielded an energy savings 

boost of 20-25%. Nonetheless, it exhibited performance limitations in 

dynamic environments. 

 

26. Jingyao et al., (2023) presented an RDMA (Remote Direct Memory 

Access) optimization technique for two-phase locking (2PL) concurrency 

control in distributed databasesThe approach involved enhancing and 

streamlining the lock acquisition and release processes of NO WAIT and 

WAIT DIE 2PL algorithms using RDMA one-sided primitives. This 

included introducing strategies like one-sided mutex lock and one-sided 

mutex/shared lock. The research found that the one-sided mutex lock 

strategy excelled in scenarios with minimal contention, whereas the one-

sided mutex/shared lock strategy performed better in situations with high 

contention. Experimental findings from the YCSB benchmark 

demonstrated that the optimized NO WAIT and WAIT DIE algorithms 

achieved significant performance enhancements, with improvements of up 

to 5.3x and 10.6x observed under high contention workloads. However, 

the limitations include the complexity of implementing complex 

operations using RDMA one-sided primitives and the potential 

performance impact of retries due to atomicity violations. 

 

27. Zhao et al., (2023) proposed RCBench, an RDMA-enabled transaction 

framework that aimed to achieve transaction scalability over high-

performance RDMA networks. The approach involved abstracting six 

concurrency control primitives, namely ReadD, WriteD, AtomicD, ReadT, 

WriteT, and AtomicT, which leverage one-sided RDMA (Remote Direct 

Memory Access) verbs for efficient remote data access. Additionally, the 

model introduced optimization principles aimed at reducing RDMA verb 

invocations during the re-implementation of various concurrency control 
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algorithms such as Two-Phase Locking (2PL), Optimistic Concurrency 

Control (OCC), Timeout-based Concurrency Control (T/O), Multi-Version 

Concurrency Control (MVCC), and Silo. The outcomes demonstrated that 

RCBench achieved significant performance enhancements, with up to a 

42X improvement over TCP/IP, by capitalizing on the capabilities offered 

by RDMA. However, it is limited to static transactions and may require 

changes for dynamic workloads. 

 

28. Uchida et al., (2024) proposed a novel concurrent lock manager (CLMD) 

for deterministic concurrency control protocols. CLMD enabled the 

concurrent execution of non-conflicting transactions by assessing conflicts 

between the current transaction and all subsequent transactions. It 

managed lock requests without obstructing transactions and processed 

non-conflicting transactions simultaneously. Findings demonstrated a 

throughput increase of up to 44.4 times compared to traditional Calvin 

when utilizing 64 logical cores, with transaction execution time averaging 

1.49 seconds. Notably, CLMD eradicated the bottleneck caused by 

unnecessary blocking in conventional lock managers. However, the 

performance difference between CLMD and conventional methods 

shrinks under low contention. 

 

2.2.3. Hybrid Concurrency Control Methods 

1. Sheikhan et al., (2013) proposed a novel hybrid optimistic/pessimistic 

concurrency control (HCC) algorithm for centralized database systems using 

a modified gravitational search algorithm (MGSA)-optimized adaptive 

resonance theory (ART) neural model. The conflict rate of the transactions is 

selected based on the optimistic and pessimistic methods. The MGSA-ART 

model used the ART2 neural network with parameters optimized by MGSA 

and calculated the health factor (HF) of transactions for comparing and 

detecting the winner transaction. The proposed HCC algorithm was 

evaluated in a simulated banking environment with different transaction 

rates. The model resulted in 1049 number of aborts and an execution time of 

37872s for 1000 transactions in pessimistic mode and in the optimistic 

model number of aborts of 1328 and an execution time of 36248s for 1000 

transactions. The results showed that when the transaction rate is 1000 per 

second, the algorithm achieved a 35% reduction in the number of aborts. 
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The proposed model improved the concurrency and reduced aborts. The 

model increased computational complexity. 

 

2. Moiz et al., (2015) presented a hybrid concurrency control strategy for 

mobile database systems. The proposed hybrid strategy combined the 

benefits of pessimistic and optimistic approaches by using priority-based 

locking. In this model, transactions are assigned priorities, initially set to 

zero and executed optimistically, tolerating conflicts, with priorities 

increased upon conflicts. Once a transaction reaches the maximum priority, 

it acquires a lock and executes pessimistically for a limited time. After 

execution, it releases the lock and reverts to optimistic mode. Simulation 

results for an m-banking application scenario demonstrate improved 

throughput, reduced waiting time, and a gradual decrease in starved 

transaction requests compared to pure pessimistic or optimistic strategies. 

Yet, the model lacked in determining appropriate maximum priority values 

for different transaction types. 

 

 

3. Yu et al., (2018) presented Sundial, a distributed concurrency control 

protocol that addressed two major limitations of distributed transactions such 

as high latency and high abort rates. The model dynamically determines the 

sequencing of transactions during runtime determined by their data access 

patterns using logical leases, which reduces transaction abort rates. It 

allowed the database to cache remote data in the local main memory 

maintain cache coherence and minimize the overhead associated with 

accessing remote data. The model is implemented in Sundial in a distributed 

DBMS testbed and the results showed that Sundial outperformed the 

protocol that follows is outperformed by as much as 57% under conditions 

of high contention and boosts performance by up to 4.6 times in scenarios 

with significant access skew due to caching. However, it has limitations such 

as extra storage overhead for maintaining logical leases and potential 

performance degradation for partitionable workloads. 

 

4. Gabriel et al., (2020) presented a hybridized concurrency control technique 

that integrated two-phase locking and timestamp ordering for optimizing 

transaction processing in distributed database systems. The hybridized 

method proposed in the study improved performance by enabling certain 
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operations that would typically conflict in a strict two-phase locking 

scenario, all while upholding data consistency. This technique involves 

assigning global timestamps to transactions and permitting concurrent write 

operations on the same data item by monitoring lock timestamps. 

Experimental findings demonstrated that the hybridized approach completed 

transactions approximately 30 seconds faster on average, resulting in 

reduced execution times overall. The model lacked exploring factors like 

system load in more complex scenarios. 

 

 

5. Žužek et al., (2020) proposed an agile development methodologies like 

Scrum have seen widespread adoption in software development due to 

benefits like increased flexibility, faster time-to-market, and improved 

productivity. Researchers have attempted to apply agile principles to 

physical product development as well, creating hybrid models that combine 

agile methods with traditional stage-gate processes. The proposed hybrid 

maintains the overlapping stage structure but uses Scrum for day-to-day 

work to increase agility. This facilitated faster requirements clarification and 

change response. Potential benefits include improved efficiency, stakeholder 

satisfaction, and competitive advantage through increased innovativeness 

and flexibility. Limitations include the need for empirical validation, 

analyzing project fit, addressing distributed team challenges, and 

determining the ideal scope for applying Scrum across development loops. 

 

6. Wang et al., (2021) presented RCC, a unified and comprehensive RDMA-

enabled distributed transaction processing framework (RDMA-RCC) that 

supports six serializable concurrency control protocols. RCC enabled an 

impartial and equitable comparison of the protocols conducted within a 

standardized execution environment, where the concurrency control protocol 

serves as the sole variable component. The model analysed stage-wise 

latency breakdowns and developed effective hybrid execution which 

leveraged both RDMA's two-sided and one-sided primitives for different 

protocol stages. Hybrid implementations outperformed pure two-sided or 

one-sided counterparts by up to 67% in throughput. However, the model 

increased the complexity of the system load. 
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7. Lyu et al., (2021) present an extension to the Greenplum database system to 

enable it to handle both Online Transaction Processing (OLTP) and Online 

Analytical Processing (OLAP) workloads. Greenplum was traditionally an 

OLAP data warehouse with limited OLTP capabilities. The model identified 

bottlenecks like inefficient locking mechanisms and the two-phase commit 

protocol that hindered OLTP performance. The methods utilized a global 

deadlock detector to increase query concurrency, a one-phase commit 

protocol when transactions update data on a single segment, and a resource 

group model to separate OLTP and OLAP workloads for more suitable query 

processing. The evaluation using TPC-B and CH-benchmark shows 

improved OLTP performance without sacrificing OLAP capabilities. 

However, the model lacks detailed performance comparisons against 

specialized OLTP or OLAP databases. 

 

8. Kambayashi et al., (2023) proposed a novel concurrency control protocol 

named Shirakami, designed to handle both long and short transactions in 

real-world workloads efficiently. Shirakami has two sub-protocols: 

Shirakami-LTX for long transactions based on multi-version concurrency 

control, and Shirakami-OCC for short transactions based on Silo. It 

integrated these protocols using the write preservation method and epoch-

based synchronization. Shirakami-LTX exploited a larger scheduling space 

(MVSR) than conflict serializability, reducing false positives and 

introducing order forwarding to handle conflicting long transactions without 

aborting. Shirakami-OCC is optimized for short transactions, retaining Silo's 

performance. The model reduced false positives, concurrent processing of 

long and short transactions and optimizations like read area declaration and 

on-demand version order determination. Yet, evaluating Shirakami on real-

world benchmarks like BoM and telecommunication billing is not discussed 

in the research. 

 

 

9. Nguyen et al., (2023) proposed a novel approach called Fair Thread ID 

(FairTID) for implementing transaction prioritization in real-time database 

systems. The proposed FairTID methods assigned thread IDs as timestamps 

to transactions, eliminating the need for a centralized counter. The model is 

implemented and evaluated on FairTID in a 2-phase locking protocol, 

maintaining the prioritization inherited from the Wound-Wait scheme. The 
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results show up to 1.5 times higher throughput, 1.6 times lower latency, and 

a 1.67 times lower deadline-miss ratio compared to the baseline protocol. 

However, the performance improvements were significant only when 

contention levels were not high. 

 

10. Guo et al., (2024) proposed a new architecture for data sharing among 

heterogeneous blockchain using a cross-chain hub based on Trusted 

Execution Environment (TEE). The model introduces a hybrid concurrency 

control protocol to address performance variations among blockchain. It 

deploys a cross-chain hub on a TEE-enabled server to link diverse 

blockchain. A query-execute-commit mechanism ensures the isolation of 

data and processing logic. To enhance data security and confidentiality, the 

model implements key exchange and access control protocols. It proposes a 

hybrid concurrency control protocol that utilizes optimistic control for high-

throughput blockchain and pessimistic control for low-throughput ones. The 

system achieves reasonable throughput and scalability in cross-chain data 

sharing, resulting in an execution time of 15798ms and conflict detection 

time of 1.225ms. Yet, the model performance may be limited by the slowest 

blockchain involved in data sharing. 

 

 

2.2.4. Inferences from Literature Methods 

Leveraging the strength and increasing performance in the concurrency control 

techniques requires different transactional characteristics and workload patterns 

along with a balance in allocating the resources, and maintaining the transactional 

request. The review inferred that the concurrency control in a distributed database 

environment combined with the optimization enhanced the performance and 

robustness of the system. The limitations 

1. Integrating the Multiple concurrency control mechanism without increasing 

the complexity of the system is the primary challenge in hybrid concurrency 

control. 

2. Coordinating various approaches in a highly concurrent environment 

increases the synchronization overhead and degrades the consistency. 

3. The model adds to space complexity by storing multiple types of 

information, including transaction status and details, within the system. 
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The proposed research primarily focuses on enhancing the hybrid concurrency 

control methods within the DDB environment. The research progresses the hybrid 

concurrency control methods in DDB by integrating hybrid methods and utilizing 

nature-inspired search algorithms to effectively improve efficiency and mitigate 

challenges encountered in the literature. 

2.2.5. Research gaps 

•Need to improve concurrency control algorithms in database systems, particularly 

in centralized and distributed environments without degrading the performance of 

the system. 

•Existing concurrency control methods exhibit limitations such as high abort rates, 

long execution times, and scalability issues. 

•Lack of exploration of factors such as system load and dynamic environments in 

evaluating the execution of concurrency control techniques. 

•Limited investigation of the system load and complexity on the performance and 

scalability of hybrid concurrency control techniques in distributed database 

systems. 

•Lack of research in the optimization of concurrency control protocols for dynamic 

transaction processing environments, such as cloud databases, where workload 

fluctuations and resource constraints are common challenges. 

2.3. DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS 

Distributed concurrency control algorithms encompass a range of methods and 

approaches utilized to handle concurrency in DDB systems. In distributed setups 

where data is dispersed across various nodes or sites, preserving the ability for 

transactions to operate simultaneously without causing conflicts and upholding the 

integrity and consistency of the data. These algorithms are designed to facilitate the 

coordination of access to shared data among transactions executing on disparate 

nodes within the distributed system. 

1.  Distributed Locking:  

In distributed environments, the concept of distributed locking builds upon 

traditional locking mechanisms. It functions by acquiring and releasing locks on 

data items distributed across multiple nodes to regulate concurrent transaction 

access (Wang et al., 2017). The objective of distributed locking is to prevent 
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conflicting operations on the same data item, thereby ensuring that transactions can 

proceed without interference from one another. 

2.  Timestamp Ordering:  

Timestamp ordering is a method where each transaction receives a unique 

Timestamp reflecting its initiation time. These timestamps are used to sequence 

transactions, determining their order of execution (Yu et al., 2016). This method 

ensures that transactions with conflicting operations are coordinated and executed 

in a manner that upholds consistency within the database. 

3.  Optimistic Concurrency Control (OCC):  

OCC enables transactions to progress without immediately locking data items. 

Instead, it identifies conflicts during the commit phase by comparing the state of 

the database when the transaction started with its state at the time of committing. 

This approach is particularly effective in scenarios with minimal contention and 

infrequent conflicts, making it well-suited for such environments. 

4.  Multi-Version Concurrency Control (MVCC):  

MVCC is a method applied in database systems to enable simultaneous access by 

multiple transactions. MVCC maintains multiple versions of these items without 

locking the data items. Every transaction accesses a stable snapshot of the 

database, ensuring isolation from other transactions (Ding et al., 2018). MVCC 

grants each transaction its version of data items, thus eliminating the necessity for 

locking, which reduces contention and enhances concurrency within the system. 

5.  Two-Phase Locking (2PL):  2PL, as an extension of the conventional phase 

locking protocol, guarantees serializability by enforcing transactions to follow a 

two-stage locking process. In the growing phase, transactions can acquire locks but 

are not permitted to unleash them and in the shrinking phase, transactions can 

unleash locks but are restricted from acquiring new ones. This mechanism ensures 

that transactions retain all essential locks until either they commit or abort, 

effectively preventing conflicts and upholding consistency throughout the process. 

These algorithms help in managing concurrency in distributed database systems, 

allowing transactions to execute concurrently while ensuring data consistency and 

integrity across multiple nodes (pandey et al., 2018). Each algorithm has its 

advantages and disadvantages, and the decision of the algorithm relies on factors 
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such as the system's architecture, workload characteristics, and performance 

requirements. 

2.4. STRUCTURE OF DISTRIBUTED TRANSACTIONS 

The structure of distributed transactions denotes the organizational framework and 

components involved in maintaining and managing transactions across multiple 

nodes or sites in a distributed database environment. In DDBMS, synchronizing 

concurrent user transactions poses the challenge of adapting both serializability 

and concurrency control mechanisms to operate efficiently within a distributed 

framework. Global serializability necessitates that the execution of transactions at 

every site is seriable and the order in which the transactions are serialized across 

all sites remains constant. The DDBMS protocols address the limitation of 

restoring a failed site database to a consistent state. The protocols are designed to 

handle the complexities of distributed environments, ensuring that the system can 

recover and maintain data consistency across all the sites. 

In DDBMS, each transaction originates from the master process (MP) which is 

located in the site of origin. This MP then establishes a group of cohort processes 

(COP) to perform the necessary processing tasks for executing the transaction. 

DDBS query processing strategies prioritize accessing data at its local site rather 

than a remote site. For each site where the transaction accesses data, there exists at 

least one corresponding cohort process. DDBS implementations vary in their 

approach to parallelism during query execution. When data is replicated across 

sites, each cohort responsible for updating any data item is associated with one or 

more update processes (UP) at other sites. In the distributed transactional system, 

each cohort is equipped with an update process localized to remote sites where data 

updates occur. 

These update processes are utilized for maintaining concurrency control, 

facilitating communication among themselves, and sharing updates during the 

initial phase of the commit protocol. Upon completion of its designated query, a 

cohort signals its execution completion to the master (Wei et al., 2015). After, 

receiving receipt of such signals from all cohorts, the master initiates the commit 

protocol by dispatching “prepare to commit messages” to all relevant sites. Upon 

the decision to commit, a cohort notifies the master with a “prepare" message, 

prompting the master to relay commit directives to each cohort post-receipt of 

"prepared" messages from all cohorts. This protocol concludes with the master 

receiving "committed" confirmations from all cohorts. However, if any cohort 
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encounters an inability to commit, it returns a "cannot commit" message during the 

initial phase, prompting the master to transmit "abort" rather than "commit" 

directives during the subsequent phase. The presence of replica update processes 

renders the commit protocol a nested two-phase commit protocol. further 

enhancing the system's resilience and efficiency. 

Two-Phase Commit Protocol (2PC): 

2PC is applied to ensure atomicity in distributed transactions. It has two distinct 

phases namely the preparation phase and the commit phase. In the preparation 

phase, the coordinator prompts each participant to prepare for committing the 

transaction. After verifying readiness from all participants, the coordinator 

advances to the commit phase, directing each participant to execute the 

transactions commit (Gupta et al., 2018). If any participant encounters difficulty in 

preparing or committing, the coordinator initiates a rollback process to maintain 

transaction consistency, ensuring either a complete commit or abort across all 

participants. 

Recovery Mechanisms: 

These mechanisms are used to handle failures that may arise during the transaction 

processing. The mechanisms namely checkpoints, recovery managers and logging 

are used for maintaining a system. This method ensures the system's integrity by 

restoring the consistency state of the system and also ensures the durability of 

committed transactions. 

 

2.5. MODELING OF DDBMS 

The model of DDBMS consists of six components which help enhance the 

performance and ensure the properties of the data items (Grohmann et al., 2020).  

1.  Source: A source is employed to create and generate transactions concurrently 

tracks the performance information and also maintains transactional integrity at the 

site level. 

2.  Transaction Manager: this role involves receiving transactions from their 

source and patterning their execution. It also checks how transactions are carried 

out, including managing their behaviour throughout the execution process. 



50 
 

3.  Concurrency Control Manager: It involves implementing concurrency 

control algorithms. 

4.  Resource Manager: This is responsible for representing physical resources 

such as CPUs, disks and files enabling operations such as writing to or accessing 

data or messages from these resources. This additionally represents the 

computational and I/O capabilities on each site. This structure additionally 

represents the computational and input/output (I/O) capabilities of each site. 

5.  Network Manager: The network manager contains the representation of the 

communication network model. It operates under the assumption of a LAN setup, 

where the transmission time of messages over the network is considered minimal 

or insignificant. 

6.  Sink: The sink manages the collection of statistics regarding completed 

transactions. 
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Figure 2.5 illustrates the DDBMS model structure and the processes are explained. 

 

 

Figure 2.5 Modeling of DDBMS 

 

2.6 .CONCURRENCY CONTROL PROTOCOL FOR THE 

DDBMS MODEL 

Concurrency control protocol for DDBMS models encompasses a comprehensive 

set of rules and mechanisms to manage concurrency, ensure data consistency, and 

optimize performance in a distributed database environment. Figure 2.6 represents 

the types of Concurrency control protocol 
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Figure 2.6 Concurrency control protocol 

 

1. Lock based protocols 

Lock-based protocols represent a category of strategies employed within database 

management systems to regulate simultaneous access to shared data by multiple 

transactions. Their primary aim is to guarantee that transactions obtain suitable 

locks on data elements, to prevent conflicts and uphold data consistency. The lock-

based protocols are divided into two phase locking protocols which divided in to 

Basic 2PL, Conservative 2PL, Strict 2PL and Rigorous 2PL 

1.1 two phase locking protocols: divided in to 

 

A. Basic two-phase locking protocol (Basic 2PL): 

A transaction is considered to be a two-phase locking protocol when all locking 

operations occur before any releasing operation. This protocol ensures 

serializability in a centralized database when transactions run concurrently. It 

operates under the assumption that a transaction can exist in only one of two 

phases. It contains two phases namely Growing Phase and Shrinking Phase. 

In the Growing Phase, a transaction is only permitted to acquire locks and is 

blocked from releasing any lock (Pandey et al., 2018). Even if the transaction 
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completes its work with a locked data item, it is unable to release the lock during 

this phase. The growing phase concludes when the transaction reaches the lock 

point where the transaction has obtained all the locks it may potentially need. 

Once the transaction reaches the lock point, it enters into the shrinking phase. In 

the Shrinking Phase, the transaction is limited to releasing locks and cannot acquire 

any new ones. The shrinking phase begins after the transaction releases its first 

lock beyond the lock point. Subsequently, the transactions continue releasing all 

locks it has acquired without the ability to acquire new ones.  

Figure 2.7 represents the mechanism of the growing phase and shrinking phase in 

basic 2PL concurrency control protocols. 

 

 
 

 

Figure 2.7 Basic 2PL locking protocol 
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this method is deadlock-free, it may not be feasible for a multi-user 

distributed database environment due to significant delays. 

 

C. Strict two-phase locking protocol (S2PL): 

In S2PL a transaction retains its write locks until it either aborts or 

commits, deadlock may still occur, but the protocol ensures recoverable 

schedules. Under strict scheduling, a transaction cannot access a data item 

that is locked until the last transaction that modified it either commits or 

aborts. Figure 2.8 represents the Strict two-phase locking protocol (S2PL) 

 
 

 

 
Figure 2.8 Strict two-phase locking protocols 
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1.2 Graph-based protocols: 
Graph-based protocols are employed within DBMS to identify and 

prevent deadlocks between transactions. These protocols model the 

transactions and their interactions as a graph structure (Arora et al., 2016). 

In this representation, transactions are depicted as nodes, while conflicts 

between transactions are represented as edges within the graph. In this 

protocol, each transaction (T), can acquire an exclusive lock on data only 

once and must follow the rules that are defined below: 

First Lock (R1): including the root node, T can initially acquire a lock on 

any data item. 

Parent-Child Locking (R2): T can lock data (Q), only if it presently holds 

a lock on Q's parent. 

Unlocking Flexibility (R3): Data items may be unlocked at any point 

during the transaction's execution. 

Avoiding Re-Locking (R4): if data has previously been both locked and 

unlocked by T. It is prohibited from acquiring a lock on that data item. 

 

2.  Timestamp-based protocols: 

 

Timestamp-based protocols are utilized to maintain and manage 

concurrent access to shared data by multiple transactions. The conflicts 

that arise while accessing the concurrent are rectified by using these 

Timestamp protocols.  

 

 

2.1 Thomas's write rule: 
This protocol is an extension of the timestamp ordering protocol and is 

used to solve conflicts between write and read operations. The rule defines 

that if a newer transaction has already recorded the value of an object, an 

older transaction need not execute its write operation as it will eventually 

be overwritten by the newer one. thomas's write rule, an enhancement of 

the basic timestamp ordering algorithm, deviates from enforcing conflict 

serializability but reduces the rejection of write operations by adjusting 

the criteria for the write_item(I) operation in the following methods: 
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R1: If the timestamp of the latest read operation on Data Item I, denoted 

as read_TS(I), is higher than the timestamp of transaction T (TS(T)), then 

transaction T is aborted and rolled back, rejecting the operation. 

R2: If the timestamp of the latest write operation on data item I, denoted 

as write_TS(X), is higher than the timestamp of transaction T (TS(T)), 

then the write operation of transaction T is not executed. However, 

processing continues because another transaction with a higher timestamp 

than TS (T) has already written the value of X. Therefore, the write 

operation of T is considered out-dated.  

R3: "If neither condition R1 nor condition R2 is met, the transaction T's 

write operation on data item I is executed, and the write timestamp of I 

(write_TS(I)) is assigned the timestamp of transaction T (TS(T)). 

 

2.2 Multiversion timestamp ordering protocol: 

 

Multiversion concurrency control represents an updated version of basic 

timestamp ordering techniques aimed at enhancing database performance 

in multiuser environments (Freitag et al., 2022). This algorithm preserves 

previous values of a data item whenever an update occurs, effectively 

maintaining a history of changes. In this approach, the system retains 

several versions (X1, X2, …,Xn) of each data item I. Whenever a write 

function is performed on I, a new version is generated. The data manager 

maintains X, which contains a record of its versions and a history log of 

the values assigned to X. During a read (I) operation, the scheduler not 

only decides when to initiate the read request to the data manager but also 

defines which version of I should be read. By using the write operation the 

new version of X is created. The Multiversion is governed by two rules 

R1: When transaction T attempts to write to data item X, the system 

checks if there exists a version (i) of I with the high write timestamp 

(write_TS) that is lower than or equal to T's timestamp (TS(T)). If such a 

version exists and the read timestamp (read_TS) of version (i) is greater 

than T's timestamp, T is aborted and rolled back. Otherwise, a new version 

of I (xi) is created with its read timestamp set to T's timestamp, and its 

write timestamp set to TS (T). 

R2: When transaction T tries to read data I, the system finds version i of X 

with the highest write timestamp that is lower than or equal to T's 

timestamp. It then returns the value of version i to T and updates the read 



57 
 

timestamp of version i to the maximum of T's timestamp and the current 

read timestamp of version. R2 ensures that a read operation will always be 

successful and never rejected. 

   

 

2.3 Time Stamp Ordering  divied in to : 

 

A.Basic Timestamp ordering protocol:  

 

In the Timestamp ordering protocol, a unique Timestamp (TS) which 

contains its start time is assigned to each transaction. The transactions are 

ordered based on their timestamp. The transaction with the higher 

Timestamp is considered to be the most recent or newer compared to the 

transactions with lower timestamp (Yao et al., 2015). Transactions are 

executed based on the timestamp, the transactions with the lower 

timestamp (older transactions) are given priority than the transactions with 

higher timestamp (newer transactions).  

 

B. Strict time stamp ordering protocol: 

 

The enhanced version of the basic timestamp ordering is called the strict 

time stamp ordering protocol which guarantees schedules that are both 

strict and serializable. It assures recoverability and conflict serializability. 

In this protocol, when a transaction (T), executes a read_item (I) or 

write_item (I) operation where Timestamp TS (T) > write_TS (I), the read 

or write operation is postponed until the transaction responsible for 

writing the value of I commits or aborts. The strict timestamp ordering 

protocol effectively circumvents deadlock issues. 
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2.7 . CHAPTER SUMMARY 

 

This chapter provides a comprehensive introduction to DDBMS along 

with the concepts, characteristics and various types. It also delves into the 

DTP fundamentals and ACID properties essential for maintaining data 

integrity. This also explored concurrency control problems and strategies 

within DDBMS, including optimistic and pessimistic concurrency control 

methods. This reviewed recent and existing research works on DTP and 

concurrency control methods, emphasizing hybrid concurrency control 

approaches, while discussing their implications and limitations. The 

following chapters discussed the model and methodologies developed in 

this research to address and tackle the limitations and issues in the DDB 

environment and discusses the design of concurrency control mechanisms 

in DDBMS. It covers various distributed concurrency control algorithms 

like distributed locking, timestamp ordering, optimistic concurrency 

control, multi-version concurrency control, and two-phase locking 

protocols. It explains the structure of distributed transactions, including 

the roles of the master process, cohort processes, update processes, and 

the two-phase commit protocol for ensuring atomicity. Recovery 

mechanisms like checkpoints, recovery managers, and logging are also 

mentioned. The modeling of a DDBMS is described, consisting of 

components like sources, transaction managers, concurrency control 

managers, resource managers, network managers, and sinks. The chapter 

provides a detailed explanation of concurrency control protocols for 

DDBMS models, categorized into lock-based protocols, graph-based 

protocols, and timestamp-based protocols. The models involved in 

designing and implementing effective concurrency control in distributed 

database environments to ensure data consistency, integrity, and high  
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CHAPTER 3 

HYBRID CONCURRENCY CONTROL TECHNIQUE FOR 

TRANSACTION PROCESSING IN DISTRIBUTED 

DATABASE SYSTEM 

 

3.1  INTRODACTIN 

A  hybrid concurrency control method for transaction processing DDB systems is 

introduced, combining neural networks with a bio-inspired optimization algorithm. 

This method employs a Back Propagation Neural Network (BPNN) to manage 

lock-granting decisions and resolve conflicts by determining the winning 

transaction. To optimize the BPNN's performance, a metaheuristic optimization 

method known as the Bear Smell Search Algorithm (BSSA) is utilized to fine-tune 

its parameters. Historical data regarding transaction conflicts, resource contention, 

and system performance metrics are used to train the BPNN, enabling it to learn 

patterns and relationships between input parameters and concurrency control 

decisions. The strength of the BPNN lies in its ability to handle complex, non-

linear relationships between input parameters and desired outputs. However, the 

effectiveness of the BPNN is dependent upon the quality of its training and the 

optimization of its parameters, such as weights and biases. By employing the 

BSSA, the proposed method aims to optimize the BPNN's parameters to enhance 

the accuracy and efficiency of concurrency control decisions. 

 

3.2 HYBRID CONCURRENCY CONTROL MODEL FOR 

TRANSACTION PROCESSING 

A Hybrid Concurrency Control Technique for Transaction Processing integrates 

both optimistic and pessimistic concurrency control methods to manage concurrent 

access to data in a database system. This approach aims to combine the benefits of 

both methods while mitigating their respective limitations.  

The hybrid concurrency control technique combines elements of both optimistic 

and pessimistic methods to optimize performance and ensure data consistency. 

Transactions are initially executed optimistically, allowing them to proceed without 

acquiring locks. During the execution phase, the system monitors for potential 

conflicts using techniques such as validation checks or versioning mechanisms. If 
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conflicts are detected, the system switches to a pessimistic mode, where 

transactions acquire locks on data items to prevent further conflicts. Once conflicts 

are resolved and the transaction completes successfully, locks are released, and the 

system reverts to optimistic mode for subsequent transactions. Figure 3.1 

demonstrates the overall Block diagram for hybrid concurrency control. 

 

Figure 3.1 Block diagram for hybrid concurrency control 

Transactions start optimistically, allowing for high concurrency and throughput. 

Validation checks are performed at the end of the transaction to detect conflicts. If 

conflicts are detected, the system switches to a pessimistic mode, acquiring locks 

to resolve conflicts and ensure consistency. Finally, transactions are committed or 

rolled back based on the outcome of conflict resolution. This hybrid approach 

combines the benefits of both optimistic and pessimistic concurrency control, 

providing a flexible and adaptive solution for transaction processing in database 

systems. 
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3.3 BACK PROPAGATION NEURAL NETWORK (BPNN) 

The Backpropagation model serves as a crucial tool for training Artificial Neural 

Network (ANN) models, facilitating the learning process by adjusting weights to 

minimize the difference between predicted and actual outputs. This technique is 

integral to Multilayer feed-forward networks, commonly referred to as 

Backpropagation Neural Networks (BPNN). These networks comprise an input 

layer, a hidden layer, and an output layer, offering the capability to handle non-

linear problems effectively (Li et al., 2017). The BPNN operates through two main 

phases: the forward pass and the backward pass. During the forward pass, data 

traverses the network layer by layer, undergoing computation using weights, 

biases, and activation functions. The resultant output is then evaluated against the 

expected labels to calculate the loss function. In the subsequent backward pass, the 

gradient of the loss function is figured utilising the chain rule of calculus, 

alongside weights and biases. These gradients are propagated backwards through 

the network, aiding in weight and bias adjustments to refine the model's 

performance. The forward propagation of the signal is denoted as, 

  (𝑠  𝑠    𝑠𝑛)
𝑇        (3.1) 

Here, S is the signal transition from the input layer to the hidden layer 
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Figure 3.2 Architecture of the proposed model 

 

By considering the neuron’s activation function and threshold, the output of the 

neuron is determined to correspond to the layer structure. The output value hidden 

layer R_n for a neuron is mathematically expressed as, 

 𝑛   𝑎 (∑ 𝑤𝑚 𝑛𝑠𝑚    𝑛
𝑁
𝑚= )      (3.2) 

Where 𝑚 𝑎𝑛  𝑛 refers to the 𝑚𝑡𝑕𝑎𝑛  𝑛𝑡𝑕 neuron in the hidden layer,  𝑤𝑚 𝑛 refers 

to the weight connection between the 𝑚𝑡𝑕𝑎𝑛  𝑛𝑡𝑕 neuron,  𝑛 refers to the 

threshold in the 𝑛𝑡𝑕 neuron and 𝑎  refers to the activation function in the hidden 

layer. 

The output 𝑣𝑙 of the neuron in the output layer is denoted as, 

𝑣𝑙   𝑎 (∑ 𝑞𝑙 𝑛ℎ𝑛    𝑚
𝑁
𝑛= )       (3.3) 
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Here, 𝑞𝑙 𝑛 represents the weight connection between the  𝑙𝑡𝑕 layer and 𝑛𝑡𝑕 neuron, 

 𝑚 refers to the threshold in the 𝑚𝑡𝑕 neuron and 𝑎  refers to the activation 

function in the output layer. 

The error function in the forward propagation is defined as, 

   
 

 
 ∑ (𝑣𝑙     )

 𝐿
𝑙=        (3.4) 

Here,    refers to the expected output. During the backpropagation to correct the 

acquisition error the threshold value is corrected based on the weight and bias, 

which is denoted as, 

𝑣𝑙 𝑗   𝑣𝑙 𝑗 + ∆𝑣𝑙 𝑗 

∆𝑣𝑙 𝑗     𝜏
𝜕𝐸

𝜕𝑣𝑙 𝑗
   𝜏

𝜕𝐸

𝜕𝑦𝑙 
∗  
𝜕𝑦𝑙 

𝜕𝑣𝑙 𝑗
  𝜏(  𝑙   𝑦𝑙 )𝑦𝑙 (   𝑦𝑙 ) 𝑛   (3.5) 

The error correction in the output layer 𝑍𝑗 is denoted as, 

𝑍𝑗  (  𝑙  𝑦𝑙 )𝑦𝑙 (   𝑦𝑙 )       (3.6) 

The correction error  𝑛 of each unit in the hidden layer can be denoted as 

 𝑛   (∑ 𝑣𝑙 𝑗 ∗ 
𝐿
𝑙= 𝑍𝑗) 𝑛 (    𝑛 )      (3.7) 

The learning process of the BPNN revolves around the iterative transmission of 

forward signals and the backpropagation of errors. The variation between the 

observed and the predicted results is adjusted by weight and bias along with the 

threshold values. To overcome the convergence and high volatility during the 

training process, which leads to the local optimum, the model uses the BSSA 

optimization algorithm. This algorithm is used to optimize and enhance the 

performance.  

 

 

 

 

 

 



64 
 

3.4 BEAR SMELL SEARCH ALGORITHM (BSSA) 

The BSSA draws inspiration from the foraging behaviour of bears, leveraging their 

efficient strategies for locating and exploiting food sources. This algorithm mirrors 

the remarkable olfactory capabilities of bears, enabling them to detect and track 

smell over vast distances. By emulating the bear's ability to navigate toward 

promising smell trails while exploring new territories, the BSSA iteratively 

explores potential parameter configurations within a search space, guided by 

principles such as exploitation of promising regions and exploration of new areas. 

Assessing the quality of odors, particularly considering the interactions among 

odorant components, poses a challenge for traditional methods but aligns 

seamlessly with a bear's acute sense of smell (Ghasemi-Marzbali 2020). Bears 

possess an exceptionally large olfactory bulb, setting them apart from other species 

and amplifying their olfactory prowess. This enlarged olfactory bulb acts as a 

crucial receptor for detecting odors and transmitting sensory information through 

the olfactory tract to the brain. 

This model aims to compute the glomerular activity relationship among odor 

components provided as inputs. Essentially, it generates similarity indices between 

received odors. It calculates similarity measures between the odors detected. Based 

on these similarity values, bears can determine their next movement direction. The 

BSSA relies on the bear's olfactory senses to perceive diverse scents in its 

surroundings. Each scent serves as a directional cue for movement, as every 

element within the environment emits a unique odor, guiding the bear's navigation. 

The distinct odor for the craved food is the final optimal solution. Let  𝑖  

,𝑜 𝑖
  𝑜 𝑖

   𝑜 𝑖
𝑗
  𝑜 𝑖

𝑘 - be the  𝑡𝑕 odor received with   molecules/components. 

The bear receives 𝑛 breathing odors, so the solution of breathing odors is 

initialized in a matrix     , 𝑖-𝑛  𝑘   [𝑜 𝑖
𝑗
]
𝑛  𝑘

 format, which is given by, 

    

[
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⋮
𝑜 𝑖
⋮
𝑜 𝑛]
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⋱
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𝑜 𝑖
𝑗
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⋱
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⋮
𝑜 𝑖
𝑘

⋮
𝑜 𝑛
𝑘
]
 
 
 
 
 
 

𝑛  𝑘

    (3.8) 
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Here,  𝑖 contains the components such as smell from trees, animals and various 

other environmental factors. The animal carcass smell is considered to be the target 

smell for the bears and 𝑜 𝑖
𝑗
 is the 𝑗𝑡𝑕 components of   𝑡𝑕 odor. 

In accordance with the breathing function and glomerular layer process in the sniff 

cycle,   𝑖
𝑗
 represents the  𝑗𝑡𝑕 odor components in the   𝑡𝑕 odor. This can be 

mathematically represented as  

  𝑖
𝑗
   {

  𝑖  (𝑇   𝑇𝑖𝑛𝑕 𝑙𝑒) +   𝑖
𝑇𝑖𝑛ℎ𝑎𝑙𝑒      𝑇𝑖𝑛𝑕 𝑙𝑒  ≤ 𝑇 ≤  𝑇𝑒𝑥𝑕 𝑙𝑒  

  𝑖
𝑇𝑒𝑥ℎ𝑎𝑙𝑒 exp .

𝑇𝑒𝑥ℎ𝑎𝑙𝑒−𝑇

𝛾𝑒𝑥ℎ𝑎𝑙𝑒
/                   𝑇𝑒𝑥𝑕 𝑙𝑒   ≤ 𝑇

  (3.9) 

Here,  𝑇𝑖𝑛𝑕 𝑙𝑒    𝑇𝑒𝑥𝑕 𝑙𝑒 are the inhalation time and exhalation time and   𝑒𝑥𝑕 𝑙𝑒  

represents the constant value for exhalation time. The complete breathing cycle 

remains constant, which either matches the length of variable   or the length of the 

 𝑡𝑕odor. Based on the timing of inhalation and exhalation, the odor components are 

separated into two different groups. 

The receptor's sensitivities, identity and odor absorption are combined for the  𝑡𝑕 

mitral. When   𝑖
𝑗
 0, this indicates that there is no odor identified by the 

olfactory epithelium, before the next inhalation. The value of    is calculated as, 

  𝑖( 𝑖)   
 

𝑘
 ∑  (𝑜 𝑖

𝑗
)      (𝑜 𝑖

𝑗
)   {

      𝜗 ≤  𝑜 𝑖
𝑗
 

0    𝜗 >  𝑜 𝑖
𝑗
  
 𝑘

𝑗=     (3.10) 

Here, 𝜗  refers to the threshold value which is based on average odor information 

from sets and    refers to the odor length in  𝑡𝑕odor. The collected information is 

sent to the granular layers and mitral to find the optimal odor. These formulations 

replicate the neural dynamics observed in the granular and mitral layers. 

 ̇         𝑦(𝑌)    𝑥 + ∑    𝑥( ) +        (3.11) 

𝑌       𝑥( )    𝑦𝑌 +    ̇        (3.12) 

Here,    *𝑥  𝑥    𝑥𝑛+ , and 𝑌   𝑦  𝑦    𝑦𝑛 are the activities of granular 

and mitral cells,    * 𝑠   𝑠     𝑠𝑛+ represents the external inputs to the 

mitral cells,      * 𝑠    𝑠      𝑠 𝑛+ refers to the central input to granule 

cells,   𝑥( )   * 𝑥(𝑥 )  𝑥(𝑥 )    𝑥(𝑥𝑛)+ refers outputs of the mitral cells and 

 𝑦(𝑌)  { 𝑦(𝑦 )  𝑦(𝑦 )    𝑦(𝑦𝑛)} refers to the output of the granule cells, 
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 𝑥 𝑎𝑛   𝑦  are the constant values of mitral and granule cells and the constant 

value is set as 0.14, 0.29 and  𝑥  𝑎𝑛    𝑦  refers to the function which stimulates the 

output for the mitral and granule cells. The value  𝑥(𝑥) 𝑎𝑛   𝑦(𝑦) are formulated 

with the constant value and formulated as 

 𝑥(𝑥)    {
0  4 + 0  4 tanh .

𝑥− 𝜗

   4
/  𝑥 <  𝜗

0  4 +   4 tanh .
𝑥− 𝜗

  4
/  𝑥 ≥  𝜗

      (3.13) 

 𝑦(𝑦)    {
0 29 + 0 29 tanh .

𝑥− 𝜗

   9
/  𝑥 <  𝜗

0 29 + 2 9 tanh .
𝑥− 𝜗

  9
/  𝑥 ≥  𝜗

      (3.14) 

In the equation (3.13) and (3.14), the values of       𝑎𝑛     refers relationship 

between the granular and mitral cells with the synaptic-strength connection 

matrixes. This is calculated as, 

  𝑖
𝑗   {

𝑟 𝑛𝑑()

𝐶ℎ
    0 <  𝑖

𝑗
<  𝑕

0                𝑕 <  𝑖
𝑗

       (3.15) 

  𝑖
𝑗   {

𝑟 𝑛𝑑()

𝐶𝑤
    0 <  𝑖

𝑗
<  𝑤

0                 𝑤 <  𝑖
𝑗

        (3.16) 

  𝑖
𝑗   {

𝑟 𝑛𝑑()

𝐶𝑙
    0 <  𝑖

𝑗
<  𝑙

0     𝑙 <  𝑖
𝑗

        (3.17) 

Where,  𝑙   𝑕 𝑎𝑛   𝑤 are connection constants, 𝑟𝑎𝑛 () refers to the random value 

ranges between [0, 1] and  𝑖
𝑗
 indicates the space between  𝑡𝑕 and 𝑔𝑡𝑕 odors based 

on their data, where 𝑔𝑡𝑕 odor is considered to be the desired smell (Global 

solution), which indicates the distance between the local solution (representing 

each odor) and the global solution (representing the target scent). 

The optimization process integrates a mechanism by using the global solution to 

ensure and enhance the exploitation. When all the information is gathered from the 

activity and sent to the brain by neurons, the separation process starts based on the 

dissimilarity assessment. This dissimilarity process is done based on the Pearson 

correlation, which helps the bear to move to the next position based on the odor. 
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The factors used are probability odor components (POC), probability odor fitness 

(POF) and odor fitness (OF) which are formulated as, 

     
𝑂𝑖

max(𝑂𝑖)
         (3.18) 

     
𝑂𝐹𝑖

max(𝑂𝐹𝑖)
         (3.19) 

The dissimilarity between two odors can be determined through calculations using 

expected odor fitness (EOF) and distance odor components (DOC) formulations as 

outlined below: 

   𝑖     
∑ (𝑃𝑂𝐶𝑗

1− 𝑃𝑂𝐶𝑗
2 )𝑘

𝑖=1

√∑ .𝑃𝑂𝐶𝑗
1− 𝑃𝑂𝐶𝑗

2 /
2

𝑘
𝑖=1

       (3.20) 

   𝑖  |   𝑖      
𝑔|        (3.21) 

The equations provided describe the potential movements within the algorithm. 

Essentially, these formulas elucidate the connection between odors and how they 

guide candidates toward the desired positions. The method demonstrates that the 

outputs of the brain determine an appropriate direction for the next position. Within 

each region of the grid, the distances between all odors are computed using two 

thresholds, denoted as     and   . Consequently, the subsequent odors can be 

computed as follows: 

 𝑘+  

 {
    𝑖     𝑘  𝑟𝑎𝑛        𝑖   ( 𝑘   𝑏𝑒𝑠𝑡)           𝑖  ≤       𝑎𝑛     𝑖  ≤       

  3 𝑖     𝑘   𝑟𝑎𝑛      4 𝑖   ( 𝑘   𝑏𝑒𝑠𝑡)      𝑜𝑡ℎ 𝑟𝑤 𝑠  

(3.22) 

    𝑖       𝑖
 − 𝐷𝑂𝐶𝑖

   1
         𝑖       𝑖

 − 𝐷𝑂𝐶𝑖

   2
      (3.23) 

  3 𝑖       𝑖
 − 𝐷𝑂𝐶𝑖

   1
          4 𝑖       𝑖

 − 𝐷𝑂𝐶𝑖

   2
    (3.24) 
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ALGORITHM FOR BSSA 

1. The parameters are initialized: no. of population, maximum iterations 

( 𝑡 𝑟𝑚 𝑥) 

2. The population is generated with dimension         in search space. 

3. The fitness value for each row matrix (  ) is evaluated. 

4. The current global solution  𝑔 from the best odor is saved. 

5. For iteration =  ∶   𝑡 𝑟𝑚 𝑥 

a. The maximum output for the glomerular activity (  ) is calculated 

by using Eq. (3.10) & (3.11) 

b. The DS value based on breathing function is attained by using Eq. 

(3.9) 

c. The values of  𝑥(𝑥) 𝑎𝑛   𝑦(𝑦)  are calculated as the cell function 

output using Eq. (3.13) and (3.14). 

d. The values of       𝑎𝑛     are calculated using Eq. (3.15)-(3.17) 

and solve Eq. (3.11)-(3.12) 

e. The vectors    ,     and    are defined using the Eq. (3.11)-(3.12) 

f. The vectors     and     are calculated using Eq. (3.18)-(3.19) 

g. The thresholds to calculate the distance between the odors are set as 

     and    

h. To calculate the distance, the coefficient    𝑡𝑜  4 values are 

calculated, 

i  For      : 𝑛 

i. If    𝑖  ≤       𝑎𝑛     𝑖  ≤       then 

1. Generate the population using Eq. (3.23) 

ii. Else  

1. Generate the population using Eq. (3.24) 

iii. End 



69 
 

j. End for 

6. Print the global outputs 

7. End for 

 

 

Figure 3.3  Graphical view of the olfactory system, since the direction of odors 

toward bear is important; therefore, only these types of odors are drawn but in real-

world these odors released in all directions (Ghasemi-Marzbali 2020). 

 

  

Figure 3.3 Graphical view of the olfactory system 
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3.5. BPNN-BAAS-BASED HYBRID CONCURRENCY CONTROL 

MODEL 

The proposed BPNN-BSSN aims to increase accuracy and efficiency. The BPNN 

is used to lock and manage the lock decisions, along with resolving conflicts. This 

also helps in recognizing successful transactions. The parameters of BPNN are 

fine-tuned by utilizing BSSA. The BSSA is used to optimize transaction conflicts, 

resource contention, and system performance metrics based on the transaction 

history. The advantage of BPNN includes handling intricate and non-linear 

relations between inputs and output. By fine-tuning the weight and bias parameters 

the efficiency and the performance of the model is increased. The BSSA is enlisted 

to optimize these parameters, aiming to discover the optimal set that enhances the 

accuracy and efficacy of concurrency control decisions. Figure 3.4 demonstrates 

the flowchart for the proposed BPNN-BSSA model. 

 

Figure 3.4 Block diagram for the proposed BPNN-BSSA model 

For each transaction in the database, a distinct identifier is assigned to ensure the 

effectiveness and manageability of concurrency control techniques within the 

database. In this model, the database designates the transaction_id as the unique 

identifier. Each object within the database operates in two versions: the committed 

version, indicating successful execution and commitment, referred to as the old 

version, and the uncommitted version, denoting on-going execution, known as the 
new version. If objects from a transaction possess only one version and remain 

Backpropagation Neural Network 

 

 Optimistic Pessimistic  

Number of transactions 

Locking system based on conflict rate 

Parameters optimization using 

BSSA 

Transactional performance evaluation 



71 
 

unchanged for an extended period, they are considered inactive and are kept within 

hidden transactions. These hidden transactions persist until the transaction's writing 

process is finalized and committed. 

 The database system maintains records of all objects, including both 

committed and uncommitted transactions, as well as on-going transactions that 

have interacted with these objects through reads or writes without committing. 

Consequently, read or write locks are enforced on these objects. Whenever a 

transaction executes a write operation on an object, a new version of that object is 

generated. This new version persists until the transaction is committed. Upon 

completion of the transaction and satisfaction of all conditions, the previous 

version of the object is replaced. To manage conflict resolution, transactions 

maintain two lists, referred to as list1 and list2, which serve the purposes of 

sequential execution and deadlock detection, respectively.  

When a conflict of type read-write (rw) occurs, where one transaction reads an 

object that another transaction writes a new version of, the following actions are 

taken: 

The conflicting transaction Transaction1 is added to list1 of Transaction2 with 

Type = R. 

Transaction2 is added to list2 of Transaction1 with Type = R. 

In the case of a write-read (wr) conflict: 

Transaction1 is added to list1 of Transaction2 with Type = W. 

Transaction2 is added to list2 of Transaction1 with Type = W. 

The commitment of Transaction 2 is postponed until the transactions in list 1 of 

Transaction 2 are completed. Transactions in list2 of Transaction1, with types W/R, 

simply await the termination of Transaction1. However, transactions of type-write 

in the list2 of Transaction1 are dependent on the result of Transaction1. If 

Transaction 1 aborts, these transactions should also be aborted. The proposed 

algorithm considers transaction states as Ready, Waiting, and Commit. 

The optimistic method outperforms the pessimistic method when conflict 

occurrences are infrequent. Determining the appropriate method for different 

scenarios requires calculating the conflict rate, which is influenced by the time 

frame within the database. A proposed algorithm dynamically selects between 

pessimistic and optimistic concurrency control approaches based on observed 
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conflict rates over time. Monitoring the number of transactions and conflicts within 

a specific timeframe is crucial. Two buffers are employed: one records transaction 

inputs, while the other logs transaction commands between conflicts. This 

systematic approach facilitates the tracking of transaction and conflict counts in 

each cell. 

To determine and adopt optimistic and pessimistic the proposed model relies on 

conflict rate parameters defined as 

   
𝑁𝑐

𝑁𝑖
         (3.26) 

Here,    is the conflict rate parameter,    is the number of conflicts in a certain 

timeframe and  𝑖 number of input transactions in a certain timeframe. 

If decision-making via the RS/WS is not feasible, the determination relies on the 

conflict rate and it is compared to the threshold value. After the committed 

transaction from the BPPNN model, the model uses the conflict rate value to 

determine the approach between optimistic and pessimistic. To determine the 

locking system the threshold value is set based on the conflict, in this stimulation 

the threshold value is set as 0.8. If the conflict rate is less than the threshold value 

( < 0 8) then the optimistic approach is selected, whereas if the conflict rate is 

greater than a threshold value ( > 0 8) then the pessimistic approach is 

determined. 

By combining the backpropagation algorithm with the BSSA, the training process 

of the neural network can potentially be optimized more effectively, by using the 

parameters Throughput (TP), Conflict rate (CR), Execution time (ET) and CPU 

time (CT). 

      𝑇 +      +     𝑇 +     𝑇      (3.27) 

Here,       𝑎𝑛    are the random weight vectors along with the parameters 

Throughput (TP), Conflict rate (CR), Execution time (ET) and CPU time (CT). 

By optimizing the parameters the model leads to better performance and faster 

convergence. The BSSA helps explore the search space more efficiently and find 

the optimal combination of weights and biases that minimize the error function. 

Figure 3.5 illustrates the flowchart of the hybrid concurrency control model. 
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Figure 3.5 Flowchart of the hybrid concurrency control model 
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Algorithm for proposed model BPNN-BSSA 

1. Start 

2. Initialize parameters: Number of populations, maximum iterations 

3. Generate population in the search space 

4. Evaluate the fitness value for each row matrix 

5. Save current global solution 

6. For each iteration: Calculate maximum output for glomerular activity 

(MG) 

7. Calculate DS value based on breathing function 

8. Calculate values of activation functions  𝑥(𝑥) 𝑎𝑛   𝑦(𝑦) 

9. Calculate       𝑎𝑛     

10. Calculate vectors         𝑎𝑛     

11. Calculate vectors     𝑎𝑛      

12. Set thresholds for distance calculations 

13. Calculate coefficients (C1 to C4) 

14. Generate populations based on odor dissimilarity 

15. Update global outputs 

Optimistic vs. Pessimistic Approach Determination: 

16. Calculate conflict rate parameter (E) using Equation (3.26) 

17. If decision-making using RS/WS is not possible, base the decision on the 

conflict rate 

a. Determine a locking system based on conflict rate and threshold value 

b. Compare E with a threshold value (0.8) 

c. If   <  0 8: 

i. Select optimistic approach 

d. Else   >  0 8: 
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i. Select pessimistic approach 

e. End if 

Concurrency Control Model and Transaction Processing: 

f. Set a unique key for each transaction (transaction_id) 

g. Maintain versions of objects: committed (old version) and 

uncommitted (new version) 

h. Handle read-write (rw) conflicts and write-read (wr) conflicts 

i. Manage transaction states: Ready, Waiting, Commit 

18. End if 

19. Parameters are fine-tuned 

20. Performance is analysed 

21. End for 

22. Stop 

The proposed hybrid concurrency control model exploits the benefit of the BPNN 

and BSSA to ensure and enhance the efficiency, accuracy and performance of the 

database concurrency control model. The BPNN-BSSA model is employed for 

lock management, conflict resolution and transaction recognition along with the 

parameters optimization with the BSSA optimization. 

3.6.IMPLEMENTATION 

The banking simulation system comprises three interfaces: the ATM  (Automate 

Tellar Machine)form, the Customer form, and the Employee form. These forms are 

designed to replicate real ATM processes. Integration with a database facilitates 

transaction management, while CSV file handling manages transaction data input. 

The banking system follows an object-oriented structure, featuring diverse 

functionalities. An ATM number is randomly generated to populate the 

corresponding ATM field. A constraint ensures withdrawal amounts are limited to 

10,000; which is the permissible amount for stimulation. If any withdrawal amount 

exceeds the limit, the system triggers a warning message. The code validates 

withdrawal amounts, prompting the warning if necessary. Action listeners for 

update and cancel operations manage ATM transactions, involving retrieval of the 
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ATM number and withdrawal amount. Transaction details, including withdrawn 

amounts, total balances, and transaction status containing the success or failure, are 

updated in the database. 

 

(a) ATM Form 

 

(b) ATM database 

Figure 3.6 ATM interface 

The customer form integrates design and operational elements for both database 

and user interface tasks. This model ensures to creation of an interface optimized 

for user interaction with transaction and account details. Customer form gathers 

and retains customer transaction information such as credit or debit activities, 

current balance, and transaction status. Upon connection to the database, it 

authenticates the customer ID and retrieves the current balance. Subsequently, the 

balance is computed based on the selected credit or debit option and the entered 

amount. In cases where the resulting balance would be negative, it alerts the user 

about insufficient balance. Transaction updates are then executed within the 

database if the translation update fails; this promotes the display of an error 

message. Database contents include customer ID, transaction ID, credit or debit 

details, transaction amount, and current balance. This represents the structure and 

functionality of the database and user interface, encompassing customer 

transaction management, validation procedures, database interactions, and error 

resolution. Additionally, it creates a user-friendly environment conducive to 

diverse transaction-related operations. Figure 3.7 represents the Customer Interface 

which includes the customer form and customer database. 
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(a) Customer Form 

 

(b) Customer database 

Figure 3.7 Customer Interface 

The employee application's functionalities and methods, encompassing database 

operations and user interactions, are outlined within the employee form or 

interface. These methods serve to establish connections, execute queries, and 

manage the creation and updating of employee details, including comprehensive 

exception handling. The application incorporates functionality to manage aborted 

transactions and retrieve relevant data. Within the employee form, essential fields 

such as employee ID, customer ID, services, tasks, amounts, and transaction details 

are present, covering outcomes like success, failure, and aborted transactions. All 

acquired details are securely stored within the database for future reference and 

processing. Figure 3.8 represents the Employee Interface which includes Employee 

form and Employee database. 

 

(a) Employee form 

 

(b) Employee Database 

Figure 3.8 Employee interface 
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3.7.  CHAPTER SUMMARY 

The chapter discussed a novel hybrid concurrency control technique for transaction 

processing in distributed database systems. It combines a BPNN with a bio-

inspired optimization algorithm BSSA. The BPNN is used to manage lock-granting 

decisions, resolve conflicts and recognize successful transactions. The BSSA is 

employed to optimize the BPNN's parameters like weights and biases to enhance 

its accuracy and efficiency. The hybrid technique aims to combine the benefits of 

optimistic and pessimistic concurrency control methods. It uses a conflict rate 

parameter to dynamically select between the two approaches based on observed 

conflict rates over time. The proposed model maintains multiple versions of 

database objects, handles read-write and write-read conflicts through transaction 

lists, and manages transaction states like Ready, Waiting, and Commit. An 

implementation is described as involving an ATM simulation system with 

interfaces for ATM, customer, and employee transactions integrated with a 

database for transaction management. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 EXPERIMENTAL SETUP AND EVALUATION METRICS 

The experiments were carried out using Netbeans IDE (version 17), SQL 

workbench 8.0 and JDK 20 on an Intel Core i5 processor with a CPU frequency of 

1.8GHz, 8GB RAM, and the Windows 10 operating system. There are a total of 

500 customer details which are stored in the database along with the ATM details 

and the Employee details are stored in the SQL workbench database. Once the 

transaction begins the other information including the type of transaction and the 

success or failure of the transaction is also stored in the workbench database. 

To evaluate the performance based on the reliability and efficiency of transaction 

processing systems for various numbers of transactions the evaluation metrics are 

utilized. Metrics like MSE, Throughput (Mbps), Conflict Ratio, Failure Ratio, 

Execution Time (s) and CPU Utilization are used for performance evaluation.  

MSE  (Mean Squared Error) is a measure of the average squared difference 

between actual and predicted values. 

     
 

𝑁 
 ∑ (𝑦̂𝑖   𝑦𝑖)

 𝑁
𝐼=      (4.1) 

Here,    is the number of samples, 𝑦𝑖  is the actual value and 𝑦̂𝑖  is the predicted 

value. 

Throughput measures the rate at which data is successfully transmitted over a 

network in megabits per second (Mbps). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  
𝑇𝑜𝑡 𝑙 𝐷 𝑡  𝑇𝑟 𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑇𝑖𝑚𝑒 𝑇 𝑘𝑒𝑛
    (4.2) 

Conflict ratio represents the ratio of conflicts to total transactions. 

 𝑜𝑛 𝑙  𝑡  𝑎𝑡 𝑜   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑓𝑙𝑖 𝑡𝑠

𝑇𝑜𝑡 𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟 𝑛𝑠  𝑡𝑖𝑜𝑛𝑠
   (4.3) 

The failure ratio indicates the ratio of failed transactions to total transactions. 

 𝑎 𝑙𝑢𝑟   𝑎𝑡 𝑜   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹 𝑖𝑙𝑒𝑑 𝑇𝑟 𝑛𝑠  𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡 𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟 𝑛𝑠  𝑡𝑖𝑜𝑛𝑠
   ` (4.4) 
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Execution time measures the time taken to complete a task or process in seconds. 

 𝑥  𝑢𝑡 𝑜𝑛 𝑡 𝑚  𝐼     𝐼  𝑇     (4.5) 

Here, IC – Instruction count, CPI – clock period instruction and T – Clock period 

CPU utilization represents the percentage of time the CPU spends executing 

instructions. 

  𝑈 𝑈𝑡 𝑙 𝑧𝑎𝑡 𝑜𝑛  
 𝑇𝑜𝑡 𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡 𝑙 𝐸𝑙 𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒
  00%   (4.6) 

 

4.2 PERFORMANCE RESULTS 

The performances are evaluated under 25, 50, 75 and 100 Transactions. The MSE 

values fluctuate across different transaction levels. The values of throughput 

increase with the increase in number of transactions. The conflict ratio and failure 

ratio are relatively stable in different transaction levels, this indicates the system 

performance is consistent in terms of transaction failure handling and conflict 

resolution. The CPU utilization indicates that the system used consistent resource 

usage in various transaction levels. The execution time remains within the closed 

range with some variability. The performance metrics show that the system 

maintains stable performance across different transaction levels, with throughput 

and execution time being the most directly influenced by transaction volume. 

Table 4.1 Performance metrics for a system under various numbers of transactions. 

No. of 

transaction 

MSE Throughput 

(Mbps) 

Conflict 

Ratio 

Failure 

Ratio 

Execution 

Time (s) 

CPU 

Utilization 

25 0.0000029707 3.355 0.4 0.04 88.402 11.67 

50 0.0000002948 3.6909 0.44 0.06 99.653  11.71 

75 0.0000052466 3.355 0.4 0.054 86.453 11.572 

100 0.0000027564 3.523  0.42 0.05 97.475 11.56 
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 Table 4.2 Comparative analysis of performance metrics with existing methods 

  

Models/ 

Methods 

MSE Throughput 

(Mbps) 

Conflict 

Ratio 

Failure 

Ratio 

HCC-MGSA-ART  0.00000376 2.174 0.98 0.71 

HBOCC 0.00000369 1.365 1.67 0.4 

SAOL –LRCD 0.00000389 2.479 1.20 0.45 

RDMA-RCC 0.00000345 1.437 1.47 0.5 

TCC –TDG 0.00000387 1.987 1.04 0.3 

ES2PL 0.00000356 2.637 1.12 0.17 

MCSI-NVM 0.00000373 1.40 1.11 0.2 

DPC2-CD 0.00000312 3.026 1.30 0.7 

RDMA-2PL 0.00000319 1.759 1.23 0.6 

RDMA 0.00000343 2.6126 1.21 0.9 

TEE –BCCH 0.00000367 1.427 1.29 0.1 

Proposed model 

BPNN-BSSA 

0.00000275 3.523 0.42 0.05 

 

Table 4.2 provides a comparative analysis of performance metrics among various 

existing models with the proposed model BPNN-BSSA. The proposed model 

significantly outperforms all other models. In terms of MSE, the values decrease 

from the range 0.0000949436 to 0.0000331564, throughput increases with the 

range from 3.158 to 0.114, Conflict ratio decreases from range 0.62 to 3.158 and 

failure ratio decreases with the range from 0.15 to 0.85. The proposed model 

BPNN-BSSA demonstrates a superior performance in terms of accuracy, Lower 

conflict and failure rate along higher throughput, when compared to other models. 

This indicates that the model has higher accuracy for prediction, better 

synchronization, coordination and reliability. The overall performance of the model 

indicates its effectiveness. 
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Figure 4.1 Comparison of MSE between BPNN-BSSA with other approaches 

Figure 4.1 illustrates the comparative analysis between the proposed BPNN-BSSA 

and existing approaches. The BPNN-BSSA model has a lower MSE value when 

compared to other models. The MSE value of proposed BPNN-BSSA is 

0.00000275, and it is 0.00000101, 0.00000094, 0.00000114, 0.0000007, 

0.00000112, 0.00000081, 0.00000098, 0.00000037, 0.00000044, 0.00000068, 

0.00000092, higher than HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-

RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and 

TEE –BCCH methods. 
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Figure 4.2 Comparison of Throughput between BPNN-BSSA with other approaches 

Figure 4.2 illustrates the comparative analysis of throughput between the proposed 

BPNN-BSSA and existing approaches. The BPNN-BSSA model has a higher 

throughput value when compared to other models. The throughput values of the 

proposed BPNN-BSSA is 3.523 Mbps, and it is 1.349mbps, 2.158mbps, 1.044 

Mbps, 2.086 Mbps, 1.536 Mbps, 0.886 Mbps, 2.123 Mbps, 0.497 Mbps, 1.764 

Mbps, 0.9114 Mbps, 2.096 Mbps, lower than HCC-MGSA-ART, HBOCC, SAOL 

–LRCD, RDMA-RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-

2PL, RDMA and TEE –BCCH methods. 
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Figure 4.3 Comparison of Conflict Ratio between BPNN-BSSA with other approaches 

Figure 4.3 illustrates the comparative analysis of the conflict ratio between the 

proposed BPNN-BSSA and existing approaches. The BPNN-BSSA model has a 

lower conflict ratio when compared to other models. The conflict ratio of the 

proposed BPNN-BSSA is 0.42, and it is 0.56, 1.25, 0.78, 1.05, 0.62, 0.70, 0.69, 

0.88, 0.81, 0.79, 0.87, higher than HCC-MGSA-ART, HBOCC, SAOL –LRCD, 

RDMA-RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA 

and TEE –BCCH methods. 

0

0.5

1

1.5

2

Conflict Ratio

Comparison of Conflict Ratio between BPNN-

BSSA with other approaches 

HCC-MGSA-ART HBOCC

SAOL –LRCD RDMA-RCC
TCC –TDG ES2PL
MCSI-NVM DPC2-CD
RDMA-2PL RDMA
TEE –BCCH Proposed model BPNN-BSSA



85 
 

 

Figure 4.4 Comparison of Failure Ratio between BPNN-BSSA with other approaches 

Figure 4.4 illustrates the comparative analysis of the failure ratio between the 

proposed BPNN-BSSA and existing approaches. The BPNN-BSSA model has a 

lower failure ratio when compared to other models. The failure ratio of proposed 

BPNN-BSSA is 0.05, and it is 0.66, 0.35, 0.4, 0.45, 0.25, 0.12, 0.15, 0.65, 0.55, 

0.85, 0.05 higher than HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-RCC, 

TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and TEE –

BCCH methods. 

The BPNN-BSSA model exhibits superior performance in terms of MSE, with 

significantly lower values compared to other models. It also demonstrates higher 

throughput for faster data processing capabilities compared to other models. In 

terms of conflict ratio and failure ratio, the BPNN-BSSA model surpasses other 

models by maintaining lower values, indicating better synchronization, 

coordination, and system reliability. 
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4.3 DISCUSSION OF RESULTS 

The hybrid concurrency control model integrates the advantages of the pessimistic 

and optimistic approach for transaction processing in a distributed environment. 

The model is evaluated on various metrics like MSE, Conflict ratio, failure ratio, 

Throughput, CPU utilization and execution time.  The performance is evaluated 

across varying transaction volumes, including 25, 50, 75, and 100 transactions of 

the system. MSE value fluctuates across different transaction counts, indicating 

varying degrees of accuracy in predicting outcomes. The MSE values range from 

0.0000002948 to 0.0000052466, with relatively low prediction errors overall 

transaction. Throughput, measured in Mbps (Megabits per second), we observe a 

consistent trend of increasing throughput with a higher number of transactions. 

This indicates that the system can transmit data at a higher rate as the workload 

intensifies. The conflict and failure ratios remain relatively stable across different 

transaction counts, indicating consistent performance in managing conflicts and 

transaction failures. There is a slight variation in execution time, with values 

ranging from 0.04 to 0.054 seconds, indicating minor fluctuations in the time taken 

to complete transactions. CPU utilization remains relatively high, consistently 

above 86%, indicating efficient utilization of system resources across varying 

transaction loads. The analysis highlights the system's capability to maintain stable 

performance across different transaction volumes. 

The result of the proposed BPNN-BSSA model is compared to analyse the 

performance based on various metrics. The BPNN-BSSA model outperforms other 

models in terms of MSE, showcasing a significantly lower value compared to other 

methodologies. The MSE value of BPNN-BSSA is 0.00000275 which is higher 

than that of HCC-MGSA-ART (0.00000101), HBOCC (0.00000094), SAOL –

LRCD (0.00000114), RDMA-RCC (0.0000007), TCC –TDG (0.00000112), 

ES2PL (0.00000081), MCSI-NVM (0.00000098), DPC2-CD (0.00000037), 

RDMA-2PL (0.00000044), RDMA (0.00000068), and TEE –BCCH (0.00000092). 

The model demonstrates higher throughput value of BPNN-BSSA of 3.523 Mbps 

is lower than that 1.349mbps, 2.158mbps, 1.044 Mbps, 2.086 Mbps, 1.536 Mbps, 

0.886 Mbps, 2.123 Mbps, 0.497 Mbps, 1.764 Mbps, 0.9114 Mbps, 2.096 Mbps, 

lower than HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-RCC, TCC –

TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and TEE –BCCH 

methods. The BPNN-BSSA model exhibits a lower conflict ratio compared to other 

models. The conflict ratio of BPNN-BSSA (0.42) is higher and has a lower failure 

ratio (0.05) compared to HCC-MGSA-ART, HBOCC, SAOL –LRCD, RDMA-
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RCC, TCC –TDG, ES2PL, MCSI-NVM, DPC2-CD, RDMA-2PL, RDMA and 

TEE –BCCH methods. The resultants signify that the BPNN-BSSA based on 

reliability for transaction processing enhanced the performance in the distributed 

environment. 

 

4.4 CHAPTER SUMMARY 

This chapter discusses the experimental setup, performance evaluation and the 

results of the proposed model and also the results are compared to the recent 

methods for transaction processing. The comparative analysis showed that the 

BPNN-BSSA model demonstrated superior performance and provided higher 

accuracy for prediction, better synchronization and coordination, higher reliability, 

and overall effectiveness for transaction processing systems. The model handled 

non-linear relationship and complexity problems between the I/O with efficient 

performance and enhanced the concurrency control in the database. Overall, the 

proposed BPNN-BSSA model showed a promising solution for scalable and 

efficient transaction management in the distributed database environment. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1. CONCLUSION 

The hybrid BPNN-BSSA model effectively manages the intricate and non-linear 

correlation between input and output variables, demonstrating efficient 

performance. By identifying the optimal set of weight and bias parameters, the 

model minimizes error functions and enhances concurrency control efficiency. 

Moreover, it dynamically selects between optimistic and pessimistic concurrency 

models based on the observed conflict rate, adapting locking strategies according 

to the workload of the database. Through the integration of BPNN and BSSA, the 

model proficiently handles the transaction and versioning mechanisms, thereby 

ensuring and augmenting concurrency control within the database. This innovative 

approach, merging neural networks with optimization techniques, successfully 

tackles the challenges associated with concurrent resource access in database 

systems. 

The model demonstrated exceptional performance compared to existing methods, 

showcasing lower MSE, increased throughput, and minimized conflict and failure 

ratios. The selection of concurrency control strategy dynamically adjusts based on 

the conflict rate, allowing the model to choose an appropriate locking strategy 

tailored to current database workloads. Integration of mechanisms for both 

committed and uncommitted transactions further enhances the model's capability 

for robust concurrency control. By adapting to different concurrency control 

approaches and utilizing optimized neural network parameters, the model emerges 

as a promising solution for efficient and scalable transaction management in 

modern distributed database environments.  

5.2 FUTURE WORK 

The research work can be further continued in future with the following methods, 

  The current model focuses on transaction processing in a general context. 

The model could explore the applicability in real-time transaction processing 

scenarios, where low latency and high throughput are critical requirements. 
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 The model can be emerged with blockchain-based databases or quantum 

databases, future work could investigate how the BPNN-BSSA model could 

be adapted or extended to support these emerging technologies and their 

unique transaction management requirements. 

 To facilitate wider adoption and usability the model could involve 

developing user-friendly interfaces, tools, or frameworks that simplify the 

deployment, configuration, and management of the model in various 

database environments. 

 To ensure protection it is essential to incorporate techniques such as 

differential privacy and homomorphic encryption to safeguard sensitive data 

and privacy during the optimization process. This ensures that user data 

confidentiality is maintained, even during collaborative decision-making. 
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 ملخص

الأنظميييل ا مة ميييل ا م يييحا أن مةييي    منظميييل : فيييا مييي    بٌاااان المشاااكلة

(    غييييييل الأدماييييييل  داحة DDBMSإداحة قةامييييييد ا  ا نيييييي   ا مة مييييييل  

ا  ا نيييي   ا من عييييحة م ييييح مةاقييييأ م ةييييددةق  ةا يييي  منظمييييل إداحة قةامييييد 

ا  ا نييي   ا مة ميييل   يييدا   فيييا ا ييي  ح  فيييا ا  ييي ام ن  اييي   ةيييد إداحة 

ا  يييي    ا ةملايييي   ميييي  ذييييعا  ن اييييت ا مةيييي مع  فييييا ةقيييي   ةا ييييد ممييييح 

الأدماييييلق امحيييي  م   ةيييي نا نميييي تا ا يييي  ح  فييييا ا  يييي ام  ا م    لييييل ميييي  

معييييييحع  فييييييا الأدا   تيييييي م مةييييييد   ا  ةيييييي ح  ا م   ة ييييييل  ييييييا  

ا مةيييييي مع ق دنيييييي ه    ييييييل إ ييييييض ن يييييي  دانيييييي ماحا  ذ ايييييي ح مف ييييييا 

اتيييي حا ا ال  ليييي  ح  فييييا ا  يييي ام   عييييحا  حا ييييا  نيييي    ملييييض ظييييحة  

 لاقا مة مع  فا ا ةق  ا  ة

ا  يييد  مييي  ديييت  ا دحاتيييل دييية  أيييةاح نميييةتا  أيييةاح اذ ييي ح  الهااادف  

 عيييحا دانييي ماحا  يييا  متييي  ام ا ييي  ح  فيييا ا  ييي ام  ا م    ليييل ةا م عييي  مل 

فيييا منظميييل إداحة قةاميييد ا  ا نييي   ا مة ميييلق   يييد  ديييت  ا دحاتيييل إ يييض 

 أيييةاح ذةاح مايييل    يييةا  عيييحا دانييي ماحا  يييا  ا ييي  ح  فيييا ا  ييي ام  

    فييييييا منظمييييييل إداحة قةامييييييد ا  ا نيييييي   ا مة مييييييلن ا م    ييييييا ةا م عيييييي

ة  تييييا  الأدا  ةا  تيييي   ميييي  ذييييعا ا  حايييي  مييييأ مةييييد   ا  ةيييي ح  

 ا م   ة لق

 تييييي  اد ا ذةاح مايييييل ا مب ح يييييل مييييي  عييييي حل مةييييي ال تا   المنهجٌاااااة  

(    دايييد مييي  إتا حييي   تيييا   مييين  ق يييا مة   دايييد BPNNان عييي ح ذل يييا  

 ا نييي   مة ميييلق  ييي    تيييا  مةلمييي   ا مة مليييل ا  ييي   ة فيييا  ا يييل ق ميييدة 



BPNN   تييييي ذدا  ذةاح مايييييل ا   ييييي  مييييي  حا  يييييل ا يييييدم  BSSA ن)

ةا  ييييا  يييي   ةييييمام     يييي أ ا عيييي حل  عييييحا دقايييي  ميييي  م ييييا ا ذيييي ت 

قييحاحا  مف يياق مييأ إدحاه منيي  فييا ا مييدادا  ا ةملاييلن      يي  ميي   حيية  

( RS( ةم مةميييييل ا بيييييحا ة  WSا مةلةمييييي    يييييةا م مةميييييل ا ح   يييييل  

   ا ييييي  فبيييييأ ق يييييا  ن ايييييت ا مة مليييييلن  ييييي   ةيييييما  ا ذةاح مايييييل  م   يييييل

 RSة WS تييييييي اة م ا تيييييييان حاةد   ا  يييييييا    ييييييية  مليييييييض  ا نييييييي   

اذ ا حايييييل مة  ايييييح ح مليييييلق  تيييييم  ي ايييييل ا ذ اييييي ح ا دان ماحايييييل ديييييت ن 

ن  لنظيييييييي     ذ ايييييييي ح مف ييييييييا BPNN-BSSAا مدمةمييييييييل  م مةمييييييييل 

مليييييض مةيييييدا اتييييي حا ا ال  لييييي  ح  فيييييا ا  ييييي ام   عيييييحا  حا يييييا  نييييي    

 ا  ة ح  ا    اق

  تيييان   ح ايييحة فيييا  BSSA-BPNNمظ يييح  ن ايييت ذةاح مايييل  النتاااا ج  

حييا ميي  مةييدا إن ييي ا ا مةيي مع  ةا  تيي   مب حنيييل   تيي  ام ا يي  ح  فيييا 

ا  ييييي ام  ا     يييييل ا  بلادايييييلق مييييي  ذيييييعا ا  ةيييييداا ا يييييدان ماحا  مةيييييدا 

ا  ةيييييي ح  فييييييا ا ةقيييييي  ا  ةلييييييان  محنيييييي  ا ذةاح ماييييييل ميييييي   بلاييييييا 

 ة ح ييييي   ا مةييييي مع  ة  تيييييا  الأدا  ا ةييييي    لنظييييي  ن ةذ ةيييييل فيييييا 

-BSSAتييييان حاةد   ا  ةيييي ح  ا ةيييي  اق ا تيييي ن  ا:  ييييةفح ذةاح ماييييل 

BPNN  ا مب ح يييييل  يييييع  فةييييي     لييييي  ح  ا يييييدان ماحا فيييييا ا  ييييي ام  فيييييا

منظميييل إداحة قةاميييد ا  ا نييي   ا مة ميييلن ةمةا نيييل الأدا  ةا  تييي   مييي  

  ةييي ح  ا م نةميييلق اةييي   دمييي   بناييي   ذيييعا ا  حاييي  ميييأ مةيييد   ا

ا ييي ةل  ا  يييا ةا   تيييا  فيييا مملايييل ا ييي  ح  فيييا ا  ييي ام  قيييدحة ا نظييي   

ا  ملييييض ا  ة مييييا مييييأ ظييييحة  ا مةيييي مع  ا م نةمييييلن مميييي  ا ةليييي  ذايييي ح 

 قةا     ا    قةامد ا  ا ن   ا مة مل ا  دا لق 



 BSSA-BPNNفييييا  ييييا  م  ذةاح ماييييل  القٌااااود والعماااال المسااااتقبلً 

ةامييييدةن إ  من يييي   اتيييي  ذ  اييييل ميييي  ا باييييةدق  ة مييييد فة  اييييل ا ذةاح ماييييل 

مليييض دقيييل ا  ن يييل  مةيييدا ا  ةييي ح ن ةا يييت  امحييي  م  ا ييي  ح  ييي   غاحا  

 ايييح ا م ةقةيييل فيييا منمييي أ ا مةييي مع ق     ييي فل إ يييض ت يييهن قيييد  يييل ح 

ملييييييض الأدا  فييييييا  BSSAة BPNNا ن بيييييي   ا  تيييييي  ال ا  ييييييا  بييييييدم   

مةييييي مع  ا مح  ةيييييل  لغ ايييييلق ا يييييم م  اححييييي  الأنظميييييل تا  م  ييييي   ا 

ا ةمييييييا ا متيييييي ب لا ملييييييض   تييييييا  ي اييييييل ا  ن ييييييل  مةييييييدا ا  ةيييييي ح ن 

ةات حعيييي   ذةاح مايييي   ا   تييييا  ا  دالييييلن ةاذ  يييي ح ا ذةاح ماييييل فييييا 

ييييي  ةمح يييييح نأ ق ييييي    ة اييييي  ق  لايييييل ا  ةتيييييأ   ا ييييي   مة ميييييل مح يييييح  نةم 

 ةا ح   ة  عحا مح حق


