Lecture seven

ـــ

Topics that must be covered in this lecture:

- *Grammar*
- *Chomsky hierarchy of languages.*

Grammar: A grammar is a set of rules which are used to construct a language (combine words to generate sentences).

Each Type of grammar G is defined formally as a mathematical system consisting of a quadruple (V, Σ, P, S) , where :

V: is an alphabet, whose elements are called **nonterminal** symbols.

∑: is an alphabet disjoint from V, whose elements are called terminal symbols.

P: is a relation of finite cardinality on ($V \cup \Sigma$)^{*}, whose elements are called production rules. Moreover, each production rule $(α, β)$ in P, denoted $α \rightarrow β$, must have at least one nonterminal symbol in α . In each such production rule, α is said to be the left-hand side of the production rule, and **β** is said to be the right-hand side of the production rule. **S** is a symbol in V called the start symbol.

Example:

1- G1= (V, Σ, P, S) is a grammar if $V = \{S\}, \Sigma = \{a, b\}, \text{ and } P = \{S \rightarrow aSb, S \rightarrow \lambda\}$. By definition, the grammar has a single nonterminal symbol S , two terminal symbols a and b, and two production rules $S \rightarrow aSb$ and $S \rightarrow \lambda$. Both production rules have a lefthand side that consists only of the nonterminal symbol S. The right-hand side of the first production rule is aSb, and the right-hand side of the second production rule is λ .

2- If $V2 = \{S\}$, $\Sigma = \{a, b\}$, and $P2 = \{S \rightarrow aSb, S \rightarrow \lambda, ab \rightarrow S\}$ then $(V2, \Sigma2, P2, S)$ is not a grammar, because ab \rightarrow S does not satisfy the requirement that each production rule must contain at least one nonterminal symbol on the left-hand side.

3- let G=($\{S, A, B\}, \{a, b\}, \{S \rightarrow AB, A \rightarrow a, B \rightarrow b\}, S$), write elements of this grammar. $V=\{S,A,B\},\ \sum=\{a,b\},\ P=\{S\rightarrow AB,A\rightarrow a,\ B\rightarrow b\}$.

The Chomsky Hierarchy

Noam Chomsky introduced the Chomsky hierarchy which classify grammar and language, and effective for writing computer languages.

ـــ

The Chomsky hierarchy gave four types of languages and their associated grammars and machines. The four classes are summarized in the table:

The four classes are summarized in the figure below:

Type 3:

A regular grammar is any right-linear or left-linear grammar, and regular grammars generate the regular languages. These languages are exactly all languages that can be decided by a finite state automaton. Additionally, this family of formal languages can be obtained by regular expressions. The rule $S \rightarrow \lambda$ is also here allowed if S does not appear on the right side of any rule. Linear grammar: in any grammar if there exit exactly one variable on the LHS and one variable on the RHS, is known as linear grammars following are example of the linear grammar:

ـــ

Right Linear Grammar Left Linear Grammar

A grammar is said to be Right
 $\begin{array}{c}\nA \text{ grammar is said to be Left} \\
\text{Linear if all productions are of}\n\end{array}$ Linear if all productions are of The form: The form: $A \rightarrow xB$ $A \rightarrow Bx$ $A \rightarrow x$ $A \rightarrow x$ $B \rightarrow y$ $B \rightarrow y$ Where $A, B \in V$ Where $A, B \in V$ **Example:** Example: $S \rightarrow abS/b$ $S \rightarrow Sbb/b$

Type 2:

Context-free grammars generate the context-free languages. These are defined by rules of the form $A \rightarrow \alpha$ with A a nonterminal and γ a string of terminals and non-terminals. These languages are exactly all languages that can be recognized by a non-deterministic pushdown automaton. Context free languages are the theoretical basis for the syntax of most programming languages.

 $A \rightarrow \alpha$ $\alpha \in (V U t)^*$ **Eg.** $S \rightarrow SS/aA/bA$ $S \rightarrow \lambda$ $S \rightarrow abB$

Type 1:

Context-sensitive grammars generate the context-sensitive languages. These grammars have rules of the form $\alpha \rightarrow \beta$, where $|\alpha| \leq |$ | and α , $\beta \in (V \cup t)^+$

The rule $S \rightarrow \varepsilon$ is allowed if S does not appear on the right side of any rule or S is a start symbol. The languages described by these grammars are exactly all languages that can be recognized by a non-deterministic Turing machine whose tape is bounded by a constant times the length of the input.

Eg. $S \rightarrow SS$ aA→bAa BB→aB $S \rightarrow \lambda$

Left side \leq right side

Type 0:

unrestricted grammars include all formal grammars. They generate exactly all languages that can be recognized by a Turing machine. The language that is recognized by a Turing machine is defined as all the strings on which it halts. These languages are also known as the recursively enumerable languages.

ـــ

```
\alpha \rightarrow \beta \alpha \in (V \cup t), \beta \in (V \cup t)^*Eg.
S \rightarrow SSS→aAb
aA→Aa
BB \rightarrow aaA→bAa
Ba→bAb
Example: Identify types of grammars:
   1 - S \rightarrow aS|a (right linear) (3,2,1,0)
   2 - S \rightarrow ABA \rightarrow aB \rightarrow bGrammar is Type ( 2,1,0)
   3- S→aSb|bSb|a|b
       Grammar is type 2
   4- S \rightarrow aS | bS | \epsilonRight linear : regular grammar (3,2,1,0)
```