Find LCM LCM (a, b) = $|a * b|$ / GCD (a, b)

```
Example: Find LCM(4864,3458)
             LCM (a, b) = |a * b| / GCD (a, b)GCD (4864, 3458)
4864 = 3458 * 1 + 14063458= 1406 *2 + 646
1406 = 646 *2 + 114646 = 114 \times 5 + 76114 = 76 * 1 + 3876 = 38 * 2 + 0GCD (4864, 3458) = 38
LCM (4864, 3458) = |3864 * 3458 | / GCD (4864, 3458)
= 16819712 / 38= 442624
```
1

Modular Arithmetic

In mathematics, modular arithmetic is a system of arithmetic for integers.

Let a be an integer and m be a positive integer. We denote by a mod m the remainder when a is divided by m.

Examples: 9 mod $4 = 1$

9 mod $3 = 0$

9 mod 10 =9: [(1) 9/10=0.9, (2) 0*10=0, (3) 9-0=9]

 $-13 \mod 4 = 3$

 $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 2$, 9 mod $7=2$

Congruences

Let a and b be integers and m be a positive integer. We say that **a is congruent to b modulo m** if m divides $a - b$ as $m|(a-b)$

We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m. In other words: $a \equiv b \pmod{m}$ if and only if **a mod m = b mod m**.

Ex: $38\equiv 14 \pmod{12}$, because $38 - 14 = 24$, which is a multiple of 12. Another way to express this is to say that both 38 and 14 have the same remainder 2, when divided by 12

Ex: $29 \equiv 8 \pmod{7}$

Congruences

Examples:

```
Is it true that 46 \equiv 68 \pmod{11}?
Yes, because 11 | (46 – 68).
```

```
Is it true that 68 \equiv 46 \pmod{22}?
Yes, because 22 | (68 – 46).
```
For which integers z is it true that $z \equiv 12 \pmod{10}$? It is true for any z∈{…,-28, -18, -8, 2, 12, 22, 32, …}

-8≡7 (mod 5)

Modular Arithmetic Operations

- 1. \lceil (a mod n) + (b mod n) \rceil mod n = (a + b) mod n
- 2. $[(a \mod n) (b \mod n)] \mod n = (a \mod n)$ – b) mod n
- $3.$ [(a mod n) x (b mod n)] mod n = (a x b) mod n

```
e.g.
[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2(11 + 15) mod 8 = 26 mod 8 = 2
```

```
[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4(11 - 15) mod 8 = -4 mod 8 = 4
```
 $[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5$ (11×15) mod 8 = 165 mod 8 = 5

Representations of Integers

Let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form:

 $n = a_k b^k + a_{k-1} b^{k-1} + ... + a_1 b + a_0$

where k is a nonnegative integer, a_0 , a_1 , ..., a_k are nonnegative integers less than b, and $a_k \ne 0$.

Example for $b = 10$: $859 = 8.10^2 + 5.10^1 + 9.10^0$

Representations of Integers

Example for b=2 (binary expansion): $(10110)₂ = 1.2⁴ + 1.2² + 1.2¹ = (22)₁₀$

Example for b=16 (hexadecimal expansion): (we use letters A to F to indicate numbers 10 to 15) $(3A0F)_{16} = 3.16^3 + 10.16^2 + 15.16^0 = (14863)_{10}$

Representations of Integers How can we construct the base b expansion of an integer n? First, divide n by b to obtain a quotient q_0 and remainder a_0 , that is, $n = bq_0 + a_0$, where $0 \le a_0 \le b$. The remainder a_0 is the rightmost digit in the base b expansion of n. Next, divide q_0 by b to obtain: $q_0 = bq_1 + a_1$, where $0 \le a_1 \le b$. a_1 is the second digit from the right in the base b expansion of n. Continue this process until you obtain a quotient equal to zero.

Representations of Integers

Example: What is the base 8 expansion of $(12345)_{10}$?

First, divide 12345 by 8: $12345 = 8.1543 + 1$

 $1543 = 8.192 + 7$ $192 = 8.24 + 0$ $24 = 8.3 + 0$ $3 = 8.0 + 3$

The result is: $(12345)_{10} = (30071)_{8}$.

Addition of Integers

Let $a = (a_{n-1}a_{n-2}...a_1a_0)_2$, $b = (b_{n-1}b_{n-2}...b_1b_0)_2$. How can we add these two binary numbers? First, add their rightmost bits: $a_0 + b_0 = c_0 \cdot 2 + s_0$ where s_0 is the rightmost bit in the binary expansion of $a + b$, and c_0 is the carry. Then, add the next pair of bits and the carry: $a_1 + b_1 + c_0 = c_1 \cdot 2 + s_1$ where s_1 is the next bit in the binary expansion of $a + b$, and $c₁$ is the carry.

Addition of Integers

Continue this process until you obtain c_{n-1} . The leading bit of the sum is $s_n = c_{n-1}$. The result is: $a + b = (s_n s_{n-1} ... s_1 s_0)_2$

Addition of Integers

Example: Add a = (1110) , and b = (1011) .

 $a_0 + b_0 = 0 + 1 = 0.2 + 1$, so that $c_0 = 0$ and $s_0 = 1$. $a_1 + b_1 + c_0 = 1 + 1 + 0 = 1.2 + 0$, so $c_1 = 1$ and $s_1 = 0$. $a_2 + b_2 + c_1 = 1 + 0 + 1 = 1.2 + 0$, so $c_2 = 1$ and $s_2 = 0$. $a_3 + b_3 + c_2 = 1 + 1 + 1 = 1.2 + 1$, so $c_3 = 1$ and $s_3 = 1$. $s_4 = c_3 = 1$.

Therefore, $s = a + b = (11001)_{2}$.

Example: Write the number 37 as a base k=2

Solution:
$$
37 = 2(18) + 1
$$
 ; $q_1 = 18 > k$.
\n $18 = 2(9) + 0$; $q_2 = 9 > k$.
\n $9 = 2(4) + 1$; $q_3 = 4 > k$.
\n $4 = 2(2) + 0$; $q_4 = 2 \ge k$.
\n $2 = 2(1) + 0$; $q_5 = 1 < k$.
\nThen we put $q_5 = a_5$ and will get;
\n $37 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
\n $= (100101)_2$.

Example: Write the number 61469 as a base k=16

Solution: $61469 = 16(3841) + 13$ $3841 = 16(240) + 1$ $240 = 16(15) + 0$

61469= $15(16^3) + 0(16^2) + 1(16) + 13$ $=(15000113)_{16}$