Greatest Common Divisors

Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called the **Greatest common divisor** of a and b.

The greatest common divisor of a and b is denoted by gcd(a, b).

Example 1: What is gcd(48, 72)? The positive common divisors of 48 and 72 are 1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24.

Example 2: What is gcd(25, 15) ? The only positive common divisor of 25 and 15 is 5, so $gcd(25, 15) = 5.$

Greatest Common Divisors

Using prime factorizations:

 $a = p_1^{a_1} p_2^{a_2} ... p_n^{a_n}$, $b = p_1^{b_1} p_2^{b_2} ... p_n^{b_n}$, where p_1 < p_2 < ... < p_n and a_i , $b_i \in \mathbb{N}$ for $1 \le i \le n$ $gcd(a, b) = p_1^{min(a_1, b_1)} p_2^{min(a_2, b_2)} ... p_n^{min(a_n, b_n)}$ Example: $a = 60 = 2^2 3^1 5^1$ $b = 54 = 2¹ 3³ 5⁰$ $gcd(a, b) = 2¹ 3¹ 5⁰ = 6$

Relatively Prime Integers

Definition:

Two integers a and b are **relatively prime** if $gcd(a, b) = 1$.

Examples:

Are 15 and 28 relatively prime? Yes, $gcd(15, 28) = 1$.

Are 55 and 28 relatively prime? Yes, $gcd(55, 28) = 1$.

Are 35 and 28 relatively prime? No, $gcd(35, 28) = 7$.

Relatively Prime Integers

The integers a_1 , a_2 ,, a_n are *pairwise relatively prime* if $gcd(a_i, a_j) = 1$ whenever $1 \leq i < j \leq n$.

Examples: Are 15, 17, and 27 pairwise relatively prime? No, because gcd $(15, 27) = 3$.

Are 15, 17, and 28 pairwise relatively prime? Yes, because gcd $(15, 17) = 1$, gcd $(15, 28) = 1$ and gcd $(17, 17) = 1$ $(28) = 1.$

Euclidean algorithm

Formal description of the Euclidean algorithm

- Input: Two positive integers, a and b.
- Output: The greatest common divisor of a and b.
- Internal computation
- 1. If a<b, exchange a and b.
- 2. Divide a by b and get the remainder r.
- 3. If r=0, report b as the GCD of a and b. Else replace a by b and replace b by r. Return to the previous step.

The Euclidean Algorithm

In pseudocode, the algorithm can be implemented as follows:

```
procedure gcd(a, b: positive integers)
x := ay := bwhile y \neq 0begin
      r := x \mod yx := y∷= r
end \{x \text{ is } gcd(a, b)\}
```
The Euclidean algorithm is a way to find the greatest common divisor of two positive integers a and b. **GCD (a, b) = GCD (b, a mod b)**

Example 1: GCD (210,45)

- 1. 210 $/45 = 4$ with remainder r= 30, so 210=4 $-4.45+30$.
- 2. 45 /30=1 with remainder r=15, so 45=1·30+15.
- 3. 30 / 15=2 with remainder r=0, so 30=2·15+0.
- 4. The greatest common divisor of 210 and 45 is 15.

```
Example 2
 Gcd(27,18)
```

```
27 = 18*1 + 918 = 9*2+0Therefore: Gcd(27,18)=9
```
Example 3 Gcd(287,91)

> 287=91*3+14 $91=14*6+7$ $14=7*2+0$

Therefore: Gcd(287,91)=7

Least Common Multiples

Definition:

The **least common multiple** of the positive integers a and b is the smallest positive integer that is divisible by both a and b. We denote the least common multiple of a and b by $lcm(a, b)$.

Examples:

 $lcm(3, 7) = 21$

 $lcm(4, 6) = 12$

 $lcm(5, 10) = 10$

Least Common Multiples Using prime factorizations: $a = p_1^{a_1} p_2^{a_2} ... p_n^{a_n}$, $b = p_1^{b_1} p_2^{b_2} ... p_n^{b_n}$, where p_1 < p_2 < ... < p_n and a_i , $b_i \in N$ for $1 \le i \le n$ $lcm(a, b) = p_1^{max(a_1, b_1)} p_2^{max(a_2, b_2)} ... p_n^{max(a_n, b_n)}$ Example: $a = 60 = 2^2 3^1 5^1$ $b = 54 = 2¹ 3³ 5⁰$ $lcm(a, b) = 2^2 3^3 5^1 = 4.27.5 = 540$

GCD and LCM

 $a = 60 = (2²) (3¹) (5¹)$ b = $54 = (2^1)(3^3)(5^0)$

 $gcd(a, b) = 2¹ 3¹ 5⁰$ $= 6$ $lcm(a, b) = (2² 3³ 5¹) = 540$

Theorem: $a \cdot b = gcd(a, b)$ ·lcm (a, b)