
1

Object Oriented programming Lecture 9

Static Class Members

 Static fields and static methods do not belong to a single instance of a class.

 To invoke a static method or use a static field, the class, rather than the instance

name, is used.

 Example:

Static Methods

 Static methods are convenient because they may be called at the class level.

 they are typically used to create utility classes, such as the Math class in the Java

standard Library.

 Static methods may not communicate with instance fields, only static fields.

Example:

public class Operation {

 public static int sum(int a,int b){

 return a+b;

 }

 public static int sub(int a,int b){

 return a-b;

 }

 public static int multi(int a,int b){

 return a*b;

 }

 public static int div(int a,int b){

 return a/b;

 }

public class Simpleoperation {

 public static void main(String[] args) {

 Operation.div(4, 2);

 Operation.sum(1, 3);

 Operation.sub(3, 4);

 Operation.multi(3, 4);

 }

}

2

Object Oriented programming Lecture 9

Inheritance and Polymorphism

9.1 Introduction

Object-oriented programming allows you to derive new classes from existing

classes. This is called inheritance. Inheritance is an important and powerful feature in

Java for reusing software.

Suppose you are to define classes to model circles, rectangles, and triangles.

These classes have many common features. What is the best way to design these classes

so to avoid redundancy and make the system easy to understand and easy to maintain?

The answer is to use inheritance.

Inheritance lets you create new classes from existing classes. Any new class that

you create from an existing class is called a subClass or derived class; existing classes

are called superclasses or base classes. The inheritance relationship enables a subClass

to inherit features from its superclass. Furthermore, the subClass can add new features

of its own. Therefore, rather than create completely new classes from scratch, you can

take advantage of inheritance and reduce software complexity.

Inheritance can be viewed as a hierarchical, structure where in a superclass is

shown with its subClasses. Consider the diagram in Figure 9-1, which shows the

relationship between various shapes.

FIGURE 9-1 Inheritance hierarchy

In this diagram, Shape is the superclass. The classes Circle and Rectangle are

(subClass) derived from Shape, and the class Square is derived from Rectangle. Every

Circle and every Rectangle is a Shape. Every Square is a Rectangle.

3

Object Oriented programming Lecture 9

The general syntax to derive a class from an existing class is:

modifier(s) class ClassName extends ExistingClassName

{

memberList

}

In Java, extends is a reserved word.

Examples:-

SubClass superClass

 public class child extends Father {

}

4

Object Oriented programming Lecture 9

 public class Circle extends Shape
{
.
.
.
}

 class Pet {

private String name;

public String getName () {

return name;

}

public void setName(String petName) {

name = petName;

}

public String speak () { return

"I'm your little pet.";

}

}

class Cat extends Pet {

//This indicates Cat is a subClass of superclass Pet
public String speak() {

return "Don't give me orders.\n" + "I speak only when I want to.";

}
public static void main (string [] args) {

setName("meo");

System.out.println("Hi, my name is " + getName());

}

}

We call the Cat class the subClass or derived class and the Pet class the superclass or base

class. We use the reserved word extends to define a subClass. Data members and methods of

a superclass are inherited by its suAClasses. so that we call (execute) setName and getName

methods in Cat class directly, where it defined in Pet class

5

Object Oriented programming Lecture 9

The following rules about superclasses and subClasses should be kept in mind:

1. ` The private members of the superclass are private to the superclass; hence, the

members of the subClass(es) cannot access them directly. In other words, you cannot

access the private members of the superclass directly.

2. The subClass can directly access the public members of the superclass.

3. The subClass can include additional data and/or method members.

4. The subClass can override, that is, redefine, the public methods of the superclass.

5. All data members of the superclass are also data members of the subClass. Similarly, the

methods of the superclass (unless overridden) are also the methods of the subClass.

6. Each subClass, in turn, may become a superclass for a future subClass. Inheritance can

be either single or multiple. In single inheritance, the subClass is derived from a single

superclass; in multiple inheritance, the subClass is derived from more than one

superclass.

Java supports only single inheritance; that is, in Java a class can extend the definition of

only one class.

9.1 Overriding Methods
The subClass can give some of its methods the same signature as given by the

superclass. For example, suppose that SuperClass contains a method, print, that prints the

values of the data members of SuperClass. SubClass contains data members in

addition to the data members inherited from SuperClass. Suppose that you want to include a

method in SuAClass that prints the data members of SuAClass. You can give any name to this

method. However, in the class SuAClass, you can also name this method print (the same

name used by SuperClass). This is called overriding, or redefining, the method of the

superclass.

The overriding means, you can have a method in the subClass with the same name, number,

and types of parameters as a method in the superclass.

To override a public method of the superclass in the subClass, the method must be

defined using the same signature and the same return type as in its superclass. If the

corresponding method in the superclass and the subClass has the same name but different

parameter lists, then this is method overloading in the subClass, which is also allowed.

Example:-

 public class Test{

int read(){
Scanner in = new Scanner (System.in);

return in.nextInt();

}

6

Object Oriented programming Lecture 9

void print (int x){

System.out.print(" these is superClass output" + x);

}

}

class overridingMethodTest extends Test {

String read(){

Scanner in = new Scanner (System.in);

return in.next();

}

void print (int x){
System.out.print(" these is subClass output" + x);

}
public static void main (String [] args) { int

number = read ();

print (number);

}

}

In program up the method print (int x) are defined in both classes Test (superClass) and

overridingMethodTest (subClass) with the same name, number, and types of parameters so

that the print (int x) is overridingMethod.

The read() method also defined in both classes but in different signature (different return

type) so that its overloading method

9.2 Overriding vs. Overloading

 Overloading means to define multiple methods with the same name but different
signatures.

 Overriding means to provide a new implementation for a method in the subClass.
The method is already defined in the superclass.

Let us use an example to show the differences between overriding and overloading. In
(a) below, the method p(double i) in class A overrides the same method defined in class

7

Object Oriented programming Lecture 9

B. In (b), however, the class B has two overloaded methods p(double i) and p(int i). The

method p(double i) is inherited from B.

9.3 Calling Superclass Methods

 If the subClass overrides a public method of the superclass, then you must specify a
call to that public method of the superclass by using the reserved word super, the
general syntax to call a method of the superclass is:

super.methodName (parameters);

 If the subClass does not override a public method of the superclass, you can specify
a call to that public method by using just name of the method and an appropriate
parameter list.

9.4 Constructors of the Superclass
A constructor typically serves to initialize the instance variables. When we instantiate a

subClass object. The general syntax to call a constructor of a superclasss is:

super (parameters);

9.5 Protected Members of a Class
The private members of a class are private to the other class and cannot be directly

accessed outside the class. Only methods of that class can access the private members

directly. The subClass cannot access the private members of the superclass directly. However,

8

Object Oriented programming Lecture 9

sometimes it may be necessary for a subClass to access a private member of a superclass. If

you make a private member public, then anyone can access that member. Recall that the

members of a class are classified into three categories: public, private, and protected. So, if a

member of a superclass needs to be (directly) accessed in a subClass and yet still prevent its

direct access outside the class, such as in a user program, you must declare that member using

the modifier protected. Thus, the accessibility of a protected member of a class falls between

public and private. A subClass can directly access the protected member of a superclass. To

summarize, if a member of a superclass needs to be accessed directly (only) by a subClass,

that member is declared using the modifier protected.

Example bellow illustrates how the methods of a subClass can directly access a protected

member of the superclass.

public class AClass {
protected char protectedCh;
private double privateX;

//Default constructor
public AClass() {

protectedCh = '*' ;
privateX = 0.0;

}
//Constructor with parameters public
AClass(char ch, double u) {

protectedCh = ch;

privateX = u;

}

public void setData(double u) {
privateX = u;

}

public void setData(char ch, double u) {
protectedCh = ch;
privateX = u;

}
public String toString() {

return ("Superclass: protectedCh = " + protectedCh + ", privateX = "
+ privateX + '\n');

}
}

9

Object Oriented programming Lecture 9

The definition of the class AClass contains the protected instance variable protectedCh of

type char, and the private instance variable privateX of type double. It also contains an

overloaded method setData; one version of setData is used to set both the instance

variables, and the other version is used to set only the private instance variable. The class
AClass also has a constructor with default parameters.

Next, we derive a class BClass from the class AClass. The class BClass contains a

private instance variable dA of type int. It also contains a method setData, with three

parameters, and the method toString.

public class BClass extends AClass {
private int dA;

public BClass() {
super();
dA = 0;

}
public BClass(char ch, double v, int a) {

super(ch, v);
dA = a; public void setData(char ch, double v, int a) {
super.setData(v);
bCh = ch; //initialize bCh using the assignment statement dA =

a;
public String toString() {

return (super.toString() + "Subclass dA = " + dA + '\n');
}

}

9.6 Protected Access vs Package Access
Typically a member of a class is declared with the modifier public, private, or protected to

give appropriate access to that member.

 if a member of a class is declared public, then it can be directly accessed outside of
the class.

 if a member of a class is declared private, then it cannot be directly accessed outside
of the class.

 if a member is declared protected, it can be directly accessed in the class as well
as in any subclass.

 If a class member is declared without any of the modifiers public, private, or
protected, then that member can be directly accessed in any class contained in same
package.

