

Object Oriented programming Lecture 4

1

Methods

Introduction

Methods can be used to define reusable code and organize and simplify coding.

Suppose that you need to find the sum of integers

from 1 to 10

from 20 to 37

from 35 to 49

You may write the code as follows:

The preceding code can be simplified as follows:

Object Oriented programming Lecture 4

2

Defining a Method

A method definition consists of

 Method name

 Parameters

 Return value type

 Method body.

The syntax for defining a method is as follows:

modifier returnValueType methodName (list of parameters) {

// Method body;

}

For example:

The components of this method,

named max, has two int parameters, num1 and num2 and the larger of which is returned by the

method.

Note:

 The method header specifies the modifiers, return value type, method name, and

parameters of the method.

 A method may return a value. The returnValueType is the data type of the value the

method returns.

Object Oriented programming Lecture 4

3

 Some methods perform desired operations without returning a value. In this case, the

returnValueType is the keyword void. For example, the returnValueType is void in the

main method, as well as in System.exit, and System.out.println.

 If a method returns a value, it is called a value-returning method; otherwise it is called a

void method.

 The variables defined in the method header are known as parameters.

 When a method is invoked (called), you pass a value to the parameter. This value is

referred to as an actual parameter or argument. The parameter list refers to the method’s

type, order, and number of the parameters. The method name and the parameter list

together constitute the method signature.

Calling (invoke) a Method

To execute the method, you have to call or invoke it.

There are two ways to call a method:

1- If a method returns a value, a call to the method is usually treated as a value (i.e. using

assignment operation). For example,

int larger = max (3, 4);

calls max(3, 4) and assigns the result of the method to the variable larger.

Or call that is treated as a value (i.e. using print the method)

System.out.println (max(3, 4));

which prints the return value of the method call max(3, 4).

2- If a method returns void, a call to the method must be a statement.

For example, the

method (println) returns void. The following call is a statement:

System.out.println ("Welcome to Java!");

min (3, 4);

random(10) ;

Object Oriented programming Lecture 4

4

FindGrade

value-returning Method Example

Write class (program) named FindGrad to print the grade of student. The class have method

named (getGrad) have one double parameter and return value of char datatype (‘A’,’B’,…,’F’)

Object Oriented programming Lecture 4

5

Define method named (sign) have one integer parameter and return value (1, 0, or -1)

void Method Example

A void method does not return a value.

Example

Object Oriented programming Lecture 4

6

Overloading Methods

Overloading methods means define multi methods with the same name and different signatures

(i.e. create two or more methods with the same name but different parameters)

- When calling max(3, 4) (line 6), the max method for finding the maximum of two integers

is invoked.

- When calling max(3.0, 5.4) (line 10), the max method for finding the maximum of two

doubles is invoked.

- When calling max(3.0, 5.4, 10.14) (line 14), the max method for finding the maximum of

three double values is invoked.

Object Oriented programming Lecture 4

7

Ambiguous Invocation.

Ambiguous invocation causes a compile error. Consider the following code:

Both max (int, double) and max (double, int) are possible candidates to match max(1, 2). Because

neither is better than the other, the invocation is ambiguous, resulting in a compile error.

Given two method definitions,

public static double m (double x, double y)

public static double m (int x, double y)

Tell which of the two methods is invoked for:

a. double z = m(4, 5);

b. double z = m(4, 5.4);

c. double z = m(4.5, 5.4);

The Scope of Variables

The scope of a variable is the part of the program where the variable can be referenced.

 A block is begun with an opening curly brace ({) and ended by a closing curly brace (}

).

 A block defines a scope. Thus, each time you start a new block, you are

creating a new scope.

Object Oriented programming Lecture 4

8

 A scope determines what objects are visible to other parts of your program.

It also determines the lifetime of those objects.

 Variables declared inside a scope are not visible (cannot access and/or

modification) to code that is defined outside that scope.

For example

// block scope.

class Scope {

public static void main(String args[])

{
int x; // x is global variable (known to all code within main method block)

x = 10;

if (x == 10)

{ // Start new scope
int y = 20; // y is local variable(known only to if block)

// x and y both known here.

x = y * 2;

} // End new scope

y = 100; // Error! y not known here Here, y is outside of its scope.

// x is still known here.

System.out.println("x is " + x);

}
}

 A global variable is a variable defined inside a class or main method.

 A local variable is a variable defined inside a method, if, for. etc.

Object Oriented programming Lecture 4

9

 Within a block, variables can be declared at any point, but are valid only after they are

declared. Thus, if you define a variable at the start of a method, it is available to all of the

code within that method.

 Variables are created when their scope is entered, and destroyed when their scope is left.

This means that a variable will not hold its value once it has gone out of scope. Therefore,

variables declared within a method will not hold their values between calls to that

method. Also, a variable declared within a block will lose its value when the block is left.

Thus, the lifetime of a variable is confined to its scope.

Ex:-

class VarInitDemo {

public static void main(String args[]) {

int x;

for (x = 0; x < 3; x++)

{

int y = -1; // y is initialized each time block is entered

System.out.println("y is: " + y); // this always prints -1

y = 100;

System.out.println("y is now: " + y);

}

}

}

Note: - A variable declared in the initial part of a for-loop header has its scope in the entire

loop. But a variable declared inside a for-loop body has its scope limited in the loop body from

its declaration to the end of the block that contains the variable, as shown in Figure bellow.

Common Error

You can declare a local variable with the same name in different blocks in a method, but you

cannot declare a local variable twice in the same block or in nested blocks, as shown in Figure

bellow

Object Oriented programming Lecture 4

10

Common Mathematical Functions

Java provides many useful methods in the Math class for performing common mathematical

functions.

The min, max, and abs Methods

The min and max methods return the minimum and maximum numbers of two numbers (int,

long, float, or double).

The abs method returns the absolute value of the number (int, long, float, or double).

For example,

Math.max(2, 3) returns 3

Math.max(2.5, 3) returns 4.0

Math.min(2.5, 4.6) returns 2.5

Math.abs(-2) returns 2

Math.abs(-2.1) returns 2.1

The random Method

The random() method generates a random double value greater than or equal to 0.0 and less

than 1.0

(0 <= Math.random () < 1.0).

You can use it to write a simple expression to generate random numbers in any range.

For example,

Math.random() Returns a random integer between 0.0 and 0.9.

Object Oriented programming Lecture 4

11

(int)(Math.random() * 10) Returns a random integer between 0 and 9.

50 + (int)(Math.random() * 50) Returns a random integer between 50 and 99.

Exponent Methods

There are five methods related to exponents in the Math class as shown in Table bellow.

Math.exp(1) returns 2.71828

Math.log(Math.E) returns 1.0

Math.log10(10) returns 1.0

Math.pow(2, 3) returns 8.0

Math.pow(3, 2) returns 9.0

Math.pow(4.5, 2.5) returns 22.91765

Math.sqrt(4) returns 2.0

Math.sqrt(10.5) returns 4.24

The Rounding Methods

The Math class contains five rounding methods as shown in Table 4.3

Object Oriented programming Lecture 4

12

Unicode and ASCII code

A character is stored in a computer as a sequence of 0s and 1s. Mapping a character to its binary

representation is called encoding.

Java supports Ascii and Unicode, an encoding scheme to support processing, and display of

written texts.

 Unicode was originally designed as a 16-bit character encoding.

 ASCII code was originally designed as a 8-bit character encoding.

Character Datatype

The char type represents only one character

Use single quotation (′ ′) with character

char ch = ′ A ′;

char ch2 = ′ c ′;

char ch3 = ′ 4 ′;

char ch4 = ′ + ′;

Reading a Character from the Console

To read a character from the console, use the nextLine() or next() method to read a string and

then invoke (call) the charAt(0) method on the string to return a character.

For example, the following

Scanner input = new Scanner(System.in);

System.out.print("Enter a character: ");

String s = input.nextLine();

char ch = s.charAt(0);

System.out.println("The character entered is " + ch);

Object Oriented programming Lecture 4

13

Shortly you can use the following:

char ch = input.nextLine().charAt(0);

Casting between char and Numeric Types

char ch = (char) 65; // Decimal 65 is assigned to ch

System.out.println(ch); // ch is character A

int i = (int) 'A'; // The Unicode of character A is assigned to i

System.out.println(i); // i is 65

Comparing and Testing Characters

Two characters can be compared using the relational operators just like comparing two

numbers. This is done by comparing the Unicodes of the two characters.

For example,

'a' < 'b' is true because the Unicode for 'a' (97) is less than the Unicode for 'b' (98).

'a' < 'A' is false because the Unicode for 'a' (97) is greater than the Unicode for 'A' (65).

'1' < '8' is true because the Unicode for '1' (49) is less than the Unicode for '8' (56).

For example:

Class Character

Java have class named Character. The Character class have several method as shown in table

below:

Object Oriented programming Lecture 4

14

For example,

System.out.println(Character.isDigit('a')); // print false

System.out.println (Character.isLetter('a')); // print true

System.out.println(Character.isLowerCase('a')); // print true

System.out.println(Character.isUpperCase('a')); // print false

System.out.println(Character.toLowerCase('T')); // print t

System.out.println(Character.toUpperCase('q')); // print Q

Show the output of the following program:

public class Test {

public static void main(String[] args) {

char x = 'a';

char y = 'c';

System.out.println(++x);

System.out.println(y++);

System.out.println(x - y);

}

}

The String Type

A string is a sequence of characters.

The char type represents only one character. To represent a string of characters, use the data

type called String.

For example, the following code declares message to be a string with the value "Welcome to

Java".

Object Oriented programming Lecture 4

15

String message = "Welcome to Java";

 String is a predefined class in the Java library, just like the classes System and Scanner.

 The String type is not a primitive type. It is known as a reference type.

Reading a String from the Console

To read a string from the console, invoke the next() or nextLine method on a Scanner object.

 The next() method reads a string that ends with a whitespace character.

 The nextLine() method to read an entire line of text. The nextLine() method reads a

string that ends with the Enter key pressed

For example, the following code reads three strings from the keyboard:

Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

Methods of Class String

Getting String Length

You can use the length() method to return the number of characters in a string. For example, the

following code

Object Oriented programming Lecture 4

17

String message = "Welcome to Java";

System.out.println("The length of " + message + " is " + message.length());

the output is

The length of Welcome to Java is 15

Getting Characters from a String

The charAt(index) method can be used to retrieve a specific character in a string s, where the

index is between 0 and s.length() –1.

For example,

message.charAt(0) // returns the character W,

FIGURE 4.1 The characters in a String object can be accessed using its index.

Concatenating Strings

String s3 = s1.concat (s2);

or

String s3 = s1 + s2;

For example:

String s1="my name";

String s1="is Ali";

System.out.println(s1.concat (s2)); // returns my name is Ali

System.out.println(s1 + s2); // returns my name is Ali

Object Oriented programming Lecture 4

18

Converting Strings

 The toLowerCase() method returns a new string with all lowercase letters

 The toUpperCase() method returns a new string with all uppercase letters.

For example,

"Welcome".toLowerCase() // returns a new string welcome.

"Welcome".toUpperCase() // returns a new string WELCOME.

Comparing Strings

The String class contains the methods as shown in Table 4.8 for comparing two strings.

 The == operator checks only whether string1 and string2 refer to the same object; it does

not tell you whether they have the same contents.

 The equals () method is used to compare two string variables have the same contents.

if (string1.equals (string2))

System.out.println("string1 and string2 have the same contents");

else

System.out.println("string1 and string2 are not equal");

For example

String s1 = "Welcome to Java";

String s2 = "Welcome to Java";

String s3 = "Welcome to C++";

System.out.println(s1.equals(s2)); // true

System.out.println(s1.equals(s3)); // false

Object Oriented programming Lecture 4

19

Obtaining Substrings

 You can obtain a single character from a string using the charAt() method.

 You can also obtain a substring from a string using the substring() method

For example,

String message = "Welcome to Java";

String message = message.substring(0, 11) + "HTML";

The string message now becomes Welcome to HTML.

Object Oriented programming Lecture 4

20

Finding a Character or a Substring in a String

The String class provides several versions of indexOf()and lastIndexOf() methods to find a

character or a substring in a string

For example:

String s ="Welcome to Java";

s.indexOf('W') // returns 0.

s.indexOf('o') // returns 4.

s.indexOf('o', 5) // returns 9.

s.indexOf("come") // returns 3.

s.indexOf("Java", 5) // returns 11.

s.indexOf("java", 5) // returns -1.

