
NETWORK PROTOCOLS

Asst. Prof. DR. MUHANED TH. M. AL-HASHIMI

Tikrit University

Collage Of Computer And Mathematical Science

2024 - 2025

TRANSPORT LAYER
AND

TRANSPORT LAYER PROTOCOLS

LECTURE 4 PART B

2204 - 2025

21 October

Our goal

Our goal In this lecture is to:

❑ understand principles behind transport layer services:

▪ multiplexing, demultiplexing

▪ reliable data transfer

▪ flow control

▪ congestion control

❑ learn about Internet transport layer protocols:

▪ UDP: connectionless transport

▪ TCP: connection-oriented reliable transport

▪ TCP congestion control

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer functionality

In this lecture part B will talk about the following:

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

UDP: User Datagram Protocol

▪ “no frills,” “bare bones” Internet
transport protocol

▪ “best effort” service, UDP
segments may be:
• lost
• delivered out-of-order to app

▪ no connection
establishment (which can
add round-trip time RTT delay)

▪ simple: no connection state
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as

desired!

▪ can function in the face of
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others

UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps

▪ DNS

▪ SNMP (Simple Network Management Protocol)

▪ if reliable transfer needed over UDP:
▪ add needed reliability at application layer

▪ add congestion control at application layer

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg▪ is passed an application-

layer message
▪ determines UDP segment

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh SNMP msg

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
▪ extracts application-layer

message

▪ checks UDP checksum
header value

▪ receives segment from IP

UDPh SNMP msg
▪ demultiplexes message up

to application via socket

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Internet checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Sender, receiver do not know
the “state” of each other, e.g.,
was a message received?
▪ unless communicated via a

message

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

Reliable data transfer: getting started

We will:
▪ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

▪ use finite state machines (FSM) to specify sender, receiver

rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for

call from

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for

call from

above

rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK

• negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet, then waits for receiver response

rdt2.0: FSM specification

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Note: “state” of receiver (did the receiver get my
message correctly?) isn’t known to sender unless
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)

rdt2.0: corrupted packet scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

rdt2.0 has a fatal flaw!

what happens if ACK/NAK
corrupted?

▪ sender doesn’t know what
happened at receiver!

▪ can’t just retransmit: possible
duplicate

handling duplicates:
▪ sender retransmits current pkt

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #s (0,1) will suffice.
Why?

▪must check if received ACK/NAK
corrupted

▪ twice as many states
• state must “remember” whether

“expected” pkt should have seq #
of 0 or 1

receiver:

▪must check if received packet
is duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

▪ note: receiver can not know if
its last ACK/NAK received OK
at sender

rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

 (corrupt(rcvpkt) ||

 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment



rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount
of time

rdt3.0 sender

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for

call 0 from

above

Wait

for

ACK1



rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)



udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))



rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:

rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Go-Back-N: sender

▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window

Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window

Selective repeat: sender and receiver

data from above:

▪ if next available seq # in
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet,
advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control

TCP flow control

application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

TCP flow control

application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

TCP connection management

before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?
▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Congestion:

▪ informally: “too many sources sending too much data too fast for
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender

too fast for one receiver

▪ a top-10 problem!

Causes/costs of congestion: scenario 1

Simplest scenario:

maximum per-connection
throughput: R/2

Host A

Host B

throughput: out

large delays as arrival rate
 approaches capacity

Q: What happens as
arrival rate in
approaches R/2?

original data: in

R
▪ two flows

▪ one router, infinite buffers

▪ input, output link capacity: R infinite shared

output link buffers

R
▪ no retransmissions needed

R/2

d
e

la
y

in

R/2

R/2


o

u
t

in

th
ro

u
gh

p
u

t:

Causes/costs of congestion: scenario 2

▪ one router, finite buffers

Host A

Host B

in : original data

'in: original data, plus

retransmitted data

finite shared output

link buffers

▪ sender retransmits lost, timed-out packet
• application-layer input = application-layer output: in = out

• transport-layer input includes retransmissions : ’in in

out

RR

Causes/costs of congestion: scenario 3

▪ four senders

▪ multi-hop paths

▪ timeout/retransmit

Q: what happens as in and in
’ increase ?

A: as red in
’ increases, all arriving blue pkts at upper

queue are dropped, blue throughput  0

finite shared
output link buffers

Host A

out

Host B

Host C

Host D

in : original data

'in: original data, plus
retransmitted data

End-end congestion control:

▪ no explicit feedback from
network

▪ congestion inferred from
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP

▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion
control:
▪ routers provide direct feedback

to sending/receiving hosts with
flows passing through congested
router

▪ may indicate congestion level or
explicitly set sending rate

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

TCP congestion control: AIMD

▪ approach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase

cut sending rate in half at
each loss event

Multiplicative Decrease

TCP AIMD: more

Multiplicative decrease detail: sending rate is

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

▪ AIMD – a distributed, asynchronous algorithm – has been
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties

TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:

▪ roughly: send cwnd bytes,
wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed
(“in-flight”)

TCP CUBIC

▪ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4

▪ TCP CUBIC default
in Linux, most
popular TCP for
popular Web
servers

▪ increase W as a function of the cube of the distance between current
time and K

TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

▪understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
not increase end-end throughout
with congested bottleneck

insight: increasing TCP
sending rate will

increase measured RTT

RTT

Goal: “keep the end-end pipe just full, but not fuller”

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:

▪ RTTmin - minimum observed RTT (uncongested path)

▪ uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to uncongested throughput
 increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout
 decrease cwnd linearly /* since path is congested */

RTTmeasured

measured
throughput =

bytes sent in
last RTT interval

Delay-based TCP congestion control

▪ congestion control without inducing/forcing loss

▪ maximizing throughout (“keeping the just pipe full… ”) while keeping
delay low (“…but not fuller”)

▪ a number of deployed TCPs take a delay-based approach

▪ BBR deployed on Google’s (internal) backbone network

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion
• policy to determine marking chosen by network operator

▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Fairness: must all network apps be “fair”?

Fairness and UDP
▪multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control

▪ instead use UDP:
• send audio/video at constant rate,

tolerate packet loss

▪ there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections

▪ application can open multiple
parallel connections between two
hosts

▪web browsers do this , e.g., link of
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data
transfers)

Many packets “in flight”; loss shuts down
pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows

▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app)

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control

state) + TLS (authentication, crypto
state)

▪2 serial handshakes

data

QUIC handshake

data

QUIC: reliability, congestion control,
authentication, crypto state

▪ 1 handshake

QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a

n
sp

o
rt

a
p

p
lic

a
ti

o
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC
encrypt

QUIC
encrypt

error!

HTTP
GET HTTP

GET
HTTP
GET

TCP over “long, fat pipes”

▪ example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10 – a
very small loss rate!

▪ versions of TCP for long, high-speed scenarios

TCP throughput =
1.22 . MSS

RTT L

Acknowledgment

▪These lecture slides are based on:

1) Chapter 3 (P 211-312) from the book “Computer Networking: A

Top-Down Approach, Eighth Edition, Global Edition” by (James

F. Kurose and Keith W. Ross’s).

END OF LECTURE (4)

Keep connected with the classroom

lmzcbsf

THANK YOU FOR YOUR ATTENTION

	Slide 1: Network Protocols
	Slide 2: transport layer and transport layer Protocols
	Slide 3: Our goal
	Slide 4: Transport layer: roadmap
	Slide 5: Transport layer: roadmap
	Slide 6: UDP: User Datagram Protocol
	Slide 7: UDP: User Datagram Protocol
	Slide 8: UDP segment header
	Slide 9: UDP: Transport Layer Actions
	Slide 10: UDP: Transport Layer Actions
	Slide 11: UDP: Transport Layer Actions
	Slide 12: UDP checksum
	Slide 13: Internet checksum
	Slide 14: Internet checksum: an example
	Slide 15: Internet checksum: weak protection!
	Slide 16: Transport layer: roadmap
	Slide 17: Principles of reliable data transfer
	Slide 18: Principles of reliable data transfer
	Slide 19: Reliable data transfer protocol (rdt): interfaces
	Slide 20: Reliable data transfer: getting started
	Slide 21: rdt1.0: reliable transfer over a reliable channel
	Slide 22: rdt2.0: channel with bit errors
	Slide 23: rdt2.0: FSM specification
	Slide 24: rdt2.0: corrupted packet scenario
	Slide 25: rdt2.0 has a fatal flaw!
	Slide 26: rdt2.1: discussion
	Slide 27: rdt2.2: a NAK-free protocol
	Slide 28: rdt2.2: sender, receiver fragments
	Slide 29: rdt3.0: channels with errors and loss
	Slide 30: rdt3.0: channels with errors and loss
	Slide 31: rdt3.0 sender
	Slide 32: rdt3.0 in action
	Slide 33: Performance of rdt3.0 (stop-and-wait)
	Slide 34: rdt3.0: stop-and-wait operation
	Slide 35: rdt3.0: pipelined protocols operation
	Slide 36: Pipelining: increased utilization
	Slide 37: Go-Back-N: sender
	Slide 38: Go-Back-N: receiver
	Slide 39: Go-Back-N in action
	Slide 40: Selective repeat: the approach
	Slide 41: Selective repeat: sender and receiver
	Slide 42: Transport layer: roadmap
	Slide 43: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 44: TCP segment structure
	Slide 45: TCP sequence numbers, ACKs
	Slide 46: TCP round trip time, timeout
	Slide 47: TCP round trip time, timeout
	Slide 48: TCP Sender (simplified)
	Slide 49: TCP fast retransmit
	Slide 50: Transport layer: roadmap
	Slide 51: TCP flow control
	Slide 52: TCP flow control
	Slide 53: TCP flow control
	Slide 54: TCP flow control
	Slide 55: TCP connection management
	Slide 56: Agreeing to establish a connection
	Slide 57: Closing a TCP connection
	Slide 58: Transport layer: roadmap
	Slide 59: Principles of congestion control
	Slide 60: Causes/costs of congestion: scenario 1
	Slide 61: Causes/costs of congestion: scenario 2
	Slide 62: Causes/costs of congestion: scenario 3
	Slide 63: Approaches towards congestion control
	Slide 64: Approaches towards congestion control
	Slide 65: Chapter 3: roadmap
	Slide 66: TCP congestion control: AIMD
	Slide 67: TCP AIMD: more
	Slide 68: TCP congestion control: details
	Slide 69: TCP CUBIC
	Slide 70: TCP and the congested “bottleneck link”
	Slide 71: Delay-based TCP congestion control
	Slide 72: Delay-based TCP congestion control
	Slide 73: Explicit congestion notification (ECN)
	Slide 74: Fairness: must all network apps be “fair”?
	Slide 75: Transport layer: roadmap
	Slide 76: Evolving transport-layer functionality
	Slide 77: QUIC: Quick UDP Internet Connections
	Slide 78: QUIC: Quick UDP Internet Connections
	Slide 79: QUIC: Connection establishment
	Slide 80: QUIC: streams: parallelism, no HOL blocking
	Slide 81: TCP over “long, fat pipes”
	Slide 82: Acknowledgment
	Slide 83

