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Our goal 

Our goal In this lecture is to:

❑ understand principles behind transport layer services:

▪ multiplexing, demultiplexing

▪ reliable data transfer

▪ flow control

▪ congestion control

❑ learn about Internet transport layer protocols:

▪ UDP: connectionless transport

▪ TCP: connection-oriented reliable transport

▪ TCP congestion control



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer functionality

In this lecture part B will talk about the following:



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality



UDP: User Datagram Protocol

▪ “no frills,” “bare bones” Internet 
transport protocol

▪ “best effort” service, UDP 
segments may be:
• lost
• delivered out-of-order to app

▪ no connection 
establishment (which can 
add round-trip time RTT delay)

▪ simple: no connection state 
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as 

desired!

▪ can function in the face of 
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP 

sender, receiver
• each UDP segment handled 

independently of others



UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps 

▪ DNS

▪ SNMP (Simple Network Management Protocol)

▪ if reliable transfer needed over UDP: 
▪ add needed reliability at application layer

▪ add congestion control at application layer



UDP segment header

source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

data to/from 
application layer



SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application



SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg▪ is passed an application-

layer message
▪ determines UDP segment 

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh SNMP msg



SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
▪ extracts application-layer 

message

▪ checks UDP checksum 
header value

▪ receives segment from IP

UDPh SNMP msg
▪ demultiplexes message up 

to application via socket



UDP checksum

Transmitted:            5               6                11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received:            4               6                11

1st number 2nd number sum

receiver-computed 
checksum

sender-computed 
checksum (as received)

=



Internet checksum

sender:
▪ treat contents of UDP 

segment (including UDP header 
fields and IP addresses) as 
sequence of 16-bit integers

▪ checksum: addition (one’s 
complement sum) of segment 
content

▪ checksum value put into 
UDP checksum field

receiver:
▪ compute checksum of received 

segment

▪ check if computed checksum equals 
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe 
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment



Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be 
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1



Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 

1 0 

Even though 
numbers have 
changed (bit 
flips), no change 
in checksum!



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality



Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol
Complexity of reliable data 

transfer protocol  will depend 
(strongly) on characteristics of 

unreliable channel (lose, 
corrupt, reorder data?)



Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol
Sender, receiver do not know 
the “state” of each other, e.g., 
was a message received?
▪ unless communicated via a 

message



Reliable data transfer protocol (rdt): interfaces

sending 
process

data

receiving 
process

data

unreliable channel

sender-side
implementation of 
rdt reliable data 
transfer protocol

receiver-side
implementation of 
rdt reliable data 
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on receiver side of 
channel

deliver_data(): called by rdt 
to deliver data to upper layer

Bi-directional communication over 
unreliable channel

data

packet



Reliable data transfer: getting started

We will:
▪ incrementally develop sender, receiver sides of reliable data transfer 

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state” 
next state uniquely 
determined by next 

event
event

actions

▪ use finite state machines (FSM)  to specify sender, receiver



rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for 

call from 

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for 

call from 

above



rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt 

received OK

• negative acknowledgements (NAKs): receiver explicitly tells sender 
that pkt had errors

• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet,  then waits for receiver  response



rdt2.0: FSM specification

Wait for 

call from 

above
udt_send(sndpkt)

Wait for 

ACK or 

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for 

call from 

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver

Note: “state” of receiver (did the receiver get my 
message correctly?) isn’t known to sender unless 
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

   isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)



rdt2.0: corrupted packet scenario

Wait for 

call from 

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

   isNAK(rcvpkt)Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)



sender

receiver



rdt2.0 has a fatal flaw!

what happens if ACK/NAK 
corrupted?

▪ sender doesn’t know what 
happened at receiver!

▪ can’t just retransmit: possible 
duplicate

handling duplicates: 
▪ sender retransmits current pkt 

if ACK/NAK corrupted

▪ sender adds sequence number 
to each pkt

▪ receiver discards (doesn’t 
deliver up) duplicate pkt

stop and wait
sender sends one packet,  then 
waits for receiver  response



rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #s (0,1) will suffice.  
Why?

▪must check if received ACK/NAK 
corrupted 

▪ twice as many states
• state must “remember” whether 

“expected” pkt should have seq # 
of 0 or 1 

receiver:

▪must check if received packet 
is duplicate
• state indicates whether 0 or 1 is 

expected pkt seq #

▪ note: receiver can not know if 
its last ACK/NAK received OK 
at sender



rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed 

▪ duplicate ACK at sender results in same action as NAK: 
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free



rdt2.2: sender, receiver fragments

Wait for 

call 0 from 

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

  isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0) 

Wait for 

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

  && has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for 

0 from 

below

rdt_rcv(rcvpkt) && 

   (corrupt(rcvpkt) ||

     has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment





rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose 
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help … 

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?



rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK 

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be  duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount 
of time



rdt3.0 sender

Wait 

for 

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for 

call 1 from 

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0) 

stop_timer

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,1) 

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for 

call 0 from 

above

Wait 

for 

ACK1



rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)



udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,0) )





rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1



Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:



rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT 

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)



rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged 
packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver



Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

 

U 
sender = 

.0024 

30.008 
= 0.00081  

3L / R 

RTT + L / R 
= 



Go-Back-N: sender

▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts 

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n 

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window



Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with 
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet: 
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not  ACKed

Not received

Receiver view of sequence number space:

… …



Go-Back-N in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1
 
receive pkt3, discard, 
           (re)send ack1

send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

pkt 2 timeout

receive pkt4, discard, 
           (re)send ack1
receive pkt5, discard, 
           (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

rcv ack0, send pkt40 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5



Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet  associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window



Selective repeat: sender and receiver

data from above:

▪ if next available seq # in 
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet, 
advance window base to next 
unACKed seq # 

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver 
buffered, in-order packets), 
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise: 
▪ ignore 

receiver



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control



TCP: overview  RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control 

set window size

▪ connection-oriented: 
• handshaking (exchange of control 

messages) initializes sender, 
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver 

▪ reliable, in-order byte 
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in 

same connection
• MSS: maximum segment size



TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes 

receiver willing to accept

sequence number

segment seq  #: counting 

bytes of data into bytestream 
(not segments!)

application

data 

(variable length)

data sent by 
application into 
TCP socket

A

acknowledgement number

ACK: seq # of next expected 
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection 
management

FSR

Urg data pointer

PUC E

C, E: congestion notification



TCP sequence numbers, ACKs

host ACKs receipt 
of echoed ‘C’

host ACKs receipt 
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80



TCP round trip time, timeout

Q: how to set TCP timeout 
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout, 
unnecessary retransmissions

▪ too long: slow reaction to 
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time 

from segment transmission until 
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want 
estimated RTT “smoother”

• average several recent 
measurements, not just current 
SampleRTT



TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in  EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT: 



TCP Sender (simplified)

event: data received from 
application

▪ create segment with seq #

▪ seq # is byte-stream number 
of first data byte in  segment

▪ start timer if not already 
running 
• think of timer as for oldest 

unACKed segment

• expiration interval: 
TimeOutInterval 

event: timeout
▪ retransmit segment that 

caused timeout
▪ restart timer
 

event: ACK received 

▪ if ACK acknowledges 
previously unACKed segments
• update what is known to be 

ACKed

• start timer if there are  still 
unACKed segments



TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs 
indicates 3 segments received 
after a missing segment – lost 

segment is likely. So retransmit!

if sender receives 3 additional 
ACKs for same data (“triple 
duplicate ACKs”), resend unACKed 
segment with smallest seq #
▪ likely that unACKed segment lost, 

so don’t wait for timeout

TCP fast retransmit



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control



TCP flow control

application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

from sender

Application removing 
data from TCP socket 

buffers

receive window flow control: # bytes 
receiver willing to accept



TCP flow control

application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by 
transmitting too much, too fast

flow control

from sender

Application removing 
data from TCP socket 

buffers



TCP flow control

▪ TCP receiver “advertises” free buffer 
space in rwnd field in TCP header

• RcvBuffer size set via socket 
options (typical default is 4096 bytes)

• many operating systems auto-adjust 
RcvBuffer

▪ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering



TCP flow control

▪ TCP receiver “advertises” free buffer 
space in rwnd field in TCP header

• RcvBuffer size set via socket 
options (typical default is 4096 bytes)

• many operating systems auto-adjust 
RcvBuffer

▪ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not 
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format



TCP connection management

before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
         server-to-client
rcvBuffer size

   at server,client 
           

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
          server-to-client
rcvBuffer size

   at server,client 
           

application

network

Socket clientSocket =   

  newSocket("hostname","port number");

Socket connectionSocket = 

welcomeSocket.accept();



Agreeing to establish a connection

Q: will 2-way handshake always 
work in network?
▪ variable delays

▪ retransmitted messages (e.g. 
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)



Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality



Congestion:

▪ informally: “too many sources sending too much data too fast for 
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control: 
too many senders, 

sending too fast

flow control: one sender 

too fast for one receiver

▪ a top-10 problem!



Causes/costs of congestion: scenario 1 

Simplest scenario:

maximum per-connection 
throughput: R/2

Host A

Host B

throughput: out

large delays as arrival rate 
 approaches capacity

Q: What happens as 
arrival rate in 
approaches R/2? 

original data: in 

R
▪ two flows

▪ one router, infinite buffers 

▪ input, output link capacity: R infinite shared 

output link buffers

R
▪ no retransmissions needed

R/2

d
e

la
y

in

R/2

R/2


o

u
t

in

th
ro

u
gh

p
u

t:
 



Causes/costs of congestion: scenario 2

▪ one router, finite buffers 

Host A

Host B

in : original data

'in: original data, plus 

retransmitted data

finite shared output 

link buffers

▪ sender retransmits lost, timed-out packet
• application-layer input = application-layer output: in = out

• transport-layer input includes retransmissions : ’in in

out

RR



Causes/costs of congestion: scenario 3

▪ four senders

▪ multi-hop paths

▪ timeout/retransmit

Q: what happens as in and in
’ increase ?

A: as red  in
’ increases, all arriving blue pkts at upper 

queue are dropped, blue throughput  0

finite shared 
output link buffers

Host A

out

Host B

Host C

Host D

in : original data

'in: original data, plus 
retransmitted data



End-end congestion control:

▪ no explicit feedback from 
network

▪ congestion inferred from 
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP



▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion 
control:
▪ routers provide direct feedback 

to sending/receiving hosts with 
flows passing through congested 
router

▪ may indicate congestion level or 
explicitly set sending rate



Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality



TCP congestion control: AIMD

▪ approach: senders can increase sending rate until packet loss 
(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r 
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1 
maximum segment size every 
RTT until loss detected

Additive Increase

cut sending rate in half at 
each loss event

Multiplicative Decrease



TCP AIMD: more

Multiplicative decrease detail:  sending rate is 

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by 
timeout (TCP Tahoe)

Why AIMD? 

▪ AIMD – a distributed, asynchronous algorithm – has been 
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties



TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed 
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space 

available but 
not used

TCP sending behavior:

▪ roughly: send cwnd bytes, 
wait RTT for ACKS, then 
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed 
(“in-flight”)



TCP CUBIC

▪ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending 

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4 

▪ TCP CUBIC default 
in Linux, most 
popular TCP for 
popular Web 
servers

▪ increase W as a function of the cube of the distance between current 
time  and K



TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

▪understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will 
not increase end-end throughout 
with congested bottleneck

insight: increasing TCP 
sending rate will 

increase measured RTT

RTT

Goal: “keep the end-end pipe just full, but not fuller”



Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep 
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:

▪ RTTmin - minimum observed RTT (uncongested path)

▪ uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to  uncongested throughput
        increase cwnd linearly                /* since path not congested */ 
else if measured throughput “far below” uncongested throughout
      decrease cwnd linearly /* since path is congested */

RTTmeasured

measured 
throughput =

# bytes sent in 
last RTT interval



Delay-based TCP congestion control

▪ congestion control without inducing/forcing loss

▪ maximizing throughout (“keeping the just pipe full… ”) while keeping 
delay low (“…but not fuller”)

▪ a number of deployed TCPs take a delay-based approach

▪ BBR deployed on Google’s (internal) backbone network



source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion
• policy to determine marking chosen by network operator

▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment



Fairness: must all network apps be “fair”?

Fairness and UDP
▪multimedia apps often do not 

use TCP
• do not want rate throttled by 

congestion control

▪ instead use UDP:
• send audio/video at constant rate, 

tolerate packet loss

▪ there is no “Internet police” 
policing use of congestion 
control

Fairness, parallel TCP 
connections

▪ application can open multiple 
parallel connections between two 
hosts

▪web browsers do this , e.g., link of 
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2 



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality



▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data 
transfers)

Many packets “in flight”; loss shuts down 
pipeline

Wireless networks Loss due to noisy wireless links, mobility; 
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows 



▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app) 

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP



QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for 
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC 
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss 
detection and congestion control will find algorithms here that parallel 
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control, 
authentication, encryption, state established in one RTT



QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control 

state) + TLS (authentication, crypto 
state)

▪2 serial handshakes

data

QUIC handshake

data

QUIC:  reliability, congestion control, 
authentication, crypto state

▪ 1 handshake



QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a

n
sp

o
rt

a
p

p
lic

a
ti

o
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP 
GET 

HTTP 
GET 

HTTP 
GET 

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
encrypt

error!

HTTP 
GET HTTP 

GET 
HTTP 
GET 



TCP over “long, fat pipes”

▪ example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10  – a 
very small loss rate!

▪ versions of TCP for long, high-speed scenarios

TCP throughput = 
1.22 . MSS

RTT L
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END OF LECTURE (4) 

Keep connected with the classroom 

lmzcbsf

THANK YOU FOR YOUR ATTENTION
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