
Tikrit University

College of Computer Science and Mathematics

Department of Computer Science

Flow Control (if – else), Repetition with loops (while)

Lec7

2nd Stage

Assistant teacher. Mustafa Latif

Understanding SQL Server IF statements

SQL Server IF statement provides a way to execute code blocks based on

specific conditions. This control-of-flow statement allows you to handle

different scenarios and make decisions within your SQL Server scripts or

stored procedures. The basic syntax of the SQL Server IF statement is

simple:

In the syntax above, the condition is an expression that evaluates to either

true or false. If the condition evaluates to true, the code block within the

BEGIN and END keywords will be executed.

Here is an example that demonstrates the usage of an SQL Server IF

statement:

In this example, the variable @value is assigned a value of 10. The IF

statement checks if it is greater than 5. Since the condition is true, the

message ‘The value is greater than 5.’ is printed after the query is

executed. In dbForge Studio for SQL Server, the result will be displayed

in the Messages tab of the Error List:

IF condition

 BEGIN

 -- code block to execute if the condition is true

 END;

DECLARE @value INT = 10;

IF @value > 5

 BEGIN

 PRINT 'The value is greater than 5.';

 END;

SQL Server IF-ELSE statements

To address the situation and obtain a response for both scenarios, where the

condition holds true or false value, we will incorporate an IF-ELSE statement into

our query:

As you can see, the basic syntax looks pretty much the same, except there is one

additional BEGIN-END clause that will be executed in case the condition does not

end up being true.

IF condition

 BEGIN

 -- code block to execute if the condition is true

 END

 ELSE

 BEGIN

 -- code block to execute if condition is false

 END;

Now, getting back to our Product table: let us now execute a query with a

deliberately false condition:

As a result, SQL Server has no problem notifying us in both cases: when the

specified condition is true and when it is false.

 WHERE Price > @Threshold

)

BEGIN

 PRINT 'There are products with prices greater than $'

+ CAST(@Threshold AS VARCHAR);

END

ELSE

BEGIN

 PRINT 'No products with prices greater than $' +

CAST(@Threshold AS VARCHAR);

END;

SQL Server Loops

Now we’re ready to move to SQL Server loops. We have 1 loop at our disposal,

and that is the WHILE loop. You might think why we don’t have others too, and

the answer is that the WHILE loop will do the job. First, we’ll take a look at its

syntax.

WHILE {condition holds}

BEGIN

{…do something…}

END;

As you could easily conclude – while the loop conditions are true, we’ll execute all

statements in the BEGIN … END block. Since we’re talking about SQL Server

loops, we have all SQL statements at our disposal, and we can use them in the

WHILE loop as we like.

Let’s now take a look at the first example of the WHILE loop.

DECLARE @i INTEGER;

SET @i = 1;

WHILE @i <= 10

BEGIN

 PRINT CONCAT ('Pass...', @i);

 SET @i = @i + 1;

END;

Two keywords – BREAK and CONTINUE, are present in most programming

languages. Same stands for SQL Server loops. The idea is the following:

 When you encounter the BREAK keyword in the loop, you simply disregard all statements

until the end of the loop (don’t execute any) and exit the loop (not going to the next step,

even if the loop condition holds)

 The CONTINUE acts similar to BREAK – it disregards all statements until the end of the

loop, but then continues with the loop

You can notice that placing a BREAK in the loop resulted that we exited the loop

in the 9th pass.

DECLARE @i INTEGER;

SET @i = 1;

WHILE @i <= 10

BEGIN

 PRINT CONCAT('Pass...', @i);

 IF @i = 9 BREAK;

 SET @i = @i + 1;

END;

The code above results with an infinite loop. The reason for that is that when @i

becomes 9, we’ll CONTINUE the loop, and @i shall never have the value 10.

Since this is an infinite loop, it will just spend resources on the server without

doing anything. We can terminate the query by clicking on the “stop” button.

After clicking on the stop button, you can notice that the loop did something,

printed numbers 1 to 8, and number 9 as many times as it happened before we

canceled the query.

DECLARE @i INTEGER;

SET @i = 1;

WHILE @i <= 10

BEGIN

 PRINT CONCAT('Pass...', @i);

 IF @i = 9 CONTINUE;

 SET @i = @i + 1;

END;

SQL WHILE loop

SQL WHILE loop provides us with the advantage to execute the SQL statement(s)

repeatedly until the specified condition result turn out to be false.

In the following sections of this article, we will use more flowcharts in order to

explain the notions and examples. For this reason, firstly, we will explain what a

flowchart is briefly. The flowchart is a visual geometric symbol that helps to explain

algorithms visually. The flowchart is used to simply design and document the

algorithms. In the flowchart, each geometric symbol specifies different meanings.

The following flowchart explains the essential structure of the WHILE loop in SQL:

As you can see, in each iteration of the loop, the defined condition is checked, and

then, according to the result of the condition, the code flow is determined. If the

result of the condition is true, the SQL statement will be executed. Otherwise, the

code flow will exit the loop. If any SQL statement exists outside the loop, it will be

executed.

SQL WHILE loop syntax and example

The syntax of the WHILE loop in SQL looks like as follows:

After these explanations, we will give a very simple example of a WHILE loop in

SQL. In the example given below, the WHILE loop example will write a value of

the variable ten times, and then the loop will be completed:

Now, we will handle the WHILE loop example line by line and examine it with

details.

In this part of the code, we declare a variable, and we assign an initializing value to

it:

DECLARE @Counter INT

WHILE condition

BEGIN

 {...statements...}

END

DECLARE @Counter INT

SET @Counter=1

WHILE (@Counter <= 10)

BEGIN

 PRINT 'The counter value is = ' + CONVERT(VARCHAR,@Counter)

 SET @Counter = @Counter + 1

END

SET @Counter=1

This part of the code has a specified condition that until the variable value reaches

till 10, the loop continues and executes the PRINT statement. Otherwise, the while

condition will not occur, and the loop will end:

WHILE (@Counter <= 10)

In this last part of the code, we executed the SQL statement, and then we incremented

the value of the variable:

BEGIN

 PRINT 'The counter value is = ' + CONVERT(VARCHAR,@Counter)

 SET @Counter = @Counter + 1

END

The following flowchart illustrates this WHILE loop example visually:

