
Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database Basics

Lecture 2

Assistant.Lec. Mustafa Latif

Second Class

Tikrit University

College of Computer Science and Mathematics

Department of Computer Science 



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Lecture 2

Database System Concepts and Architecture

Outline

 Data Models, Schemas, and Instances

 Three-Schema Architecture and Data 

Independence

 Database Languages and Interfaces

 The Database System Environment

 Centralized and Client/Server Architectures

for DBMSs

 Classification of Database Management Systems



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1 Data Models, Schemas, and Instances
One fundamental characteristic of the database approach is that it

provides some level of data abstraction.

Data abstraction generally refers to the suppression of details of data

organization and storage, and the highlighting of the essential features

for an improved understanding of data. One of the main characteristics of

the database approach is to support data abstraction so that different

users can perceive data at their preferred level of detail.

A data model—a collection of concepts that can be used to describe the

structure of a database—provides the necessary means to achieve this

abstraction. By structure of a database we mean the data types,

relationships, and constraints that apply to the data. Most data models

also include a set of basic operations for specifying retrievals and

updates on the database.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database System Concepts

and Architecture
 Basic client/server DBMS architecture

 Client module

 Server module



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Models, Schemas, and 

Instances
 Data abstraction 

 Suppression of details of data organization and 

storage

 Highlighting of the essential features for an 

improved understanding of data



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Models, Schemas, and 

Instances (cont'd.)
 Data model

 Collection of concepts that describe the 

structure of a database

 Provides means to achieve data abstraction

 Basic operations 

• Specify retrievals and updates on the database

 Dynamic aspect or behavior of a database 

application

• Allows the database designer to specify a set of 

valid operations allowed on database objects



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1.1 Categories of Data Models
Many data models have been proposed, which we can categorize according

to the types of concepts they use to describe the database structure.

High-level or conceptual data models provide concepts that are close to

the way many users perceive data.

low-level or physical data models provide concepts that describe the

details of how data is stored on the computer storage media, typically

magnetic disks. Concepts provided by physical data models are generally

meant for computer specialists, not for end users.

Between these two extremes is a class of representational (or

implementation) data models, which provide concepts that may be easily

understood by end users but that are not too far removed from the way data

is organized in computer storage. Representational data models hide many

details of data storage on disk but can be implemented on a computer

system directly.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Conceptual data models use concepts such as entities, attributes, and

relationships.

An entity represents a real-world object or concept, such as an employee

or a project from the mini-world that is described in the database.

An attribute represents some property of interest that further describes an

entity, such as the employee’s name or salary.

A relationship among two or more entities represents an association

among the entities, for example, a works-on relationship between an

employee and a project.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Representational or implementation data models are the models used most

frequently in traditional commercial DBMSs. These include the widely used

relational data model, as well as the so-called legacy data models—the

network and hierarchical models—that have been widely used in the past.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Physical data models describe how data is stored

as files in the computer by representing information

such as record formats, orderings, and access

paths. An access path is a search structure that

makes the search for particular database records

efficient, such as indexing or hashing. An index is

an example of an access path that allows direct

access to data using an index term or a keyword. It

is similar to the index at the end of this text, except

that it may be organized in a linear, hierarchical

(tree-structured), or some other fashion.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Categories of Data Models

 High-level or conceptual data models 

 Close to the way many users perceive data

 Low-level or physical data models 

 Describe the details of how data is stored on 

computer storage media

 Representational data models

 Easily understood by end users 

 Also similar to how data organized in computer 

storage



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Categories of Data Models 

(cont'd.)
 Entity 

 Represents a real-world object or concept 

 Attribute

 Represents some property of interest 

 Further describes an entity

 Relationship among two or more entities 

 Represents an association among the entities

 Entity-Relationship model



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Categories of Data Models 

(cont'd.)
 Relational data model

 Used most frequently in traditional commercial 

DBMSs

 Object data model 

 New family of higher-level implementation data 

models 

 Closer to conceptual data models



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Categories of Data Models 

(cont'd.)
 Physical data models 

 Describe how data is stored as files in the 

computer 

 Access path 

• Structure that makes the search for particular 

database records efficient

 Index 

• Example of an access path 

• Allows direct access to data using an index term or 

a keyword



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.1.2 Schemas, Instances, and Database State
In a data model, it is important to distinguish between the

description of the database and the database itself.

The description of a database is called the database schema,

which is specified during database design and is not expected

to change frequently. Most data models have certain

conventions for displaying schemas as diagrams.

A displayed schema is called a schema diagram. Figure 2.1

shows a schema diagram for the database shown in Figure 2.1,

the diagram displays the structure of each record type but not

the actual instances of records. We call each object in the

schema—such as STUDENT or COURSE—a schema

construct.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The actual data in a database may change quite frequently. For

example, the database shown in Figure 2.1 changes every time

we add a new student or enter a new grade.

The data in the database at a particular moment in time is

called a database state or snapshot. It is also called the

current set of occurrences or instances in the database.

In a given database state, each schema construct has its own

current set of instances; for example, the STUDENT construct

will contain the set of individual student entities (records) as its

instances. Many database states can be constructed to

correspond to a particular database schema. Every time we

insert or delete a record or change the value of a data item in a

record, we change one state of the database into another state.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.2 Three-Schema Architecture and Data 

Independence
2.2.1 The Three-Schema Architecture The goal of

the three-schema architecture, illustrated in Figure

2.2, is to separate the user applications from the

physical database. In this architecture, schemas can

be defined at the following three levels:

1. The internal level has an internal schema, which

describes the physical storage structure of the

database. The internal schema uses a physical data

model and describes the complete details of data

storage and access paths for the database.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2. The conceptual level has a conceptual schema, which

describes the structure of the whole database for a community

of users. The conceptual schema hides the details of physical

storage structures and concentrates on describing entities, data

types, relationships, user operations, and constraints. Usually, a

representational data model is used to describe the conceptual

schema when a database system is implemented. This

implementation conceptual schema is often based on a

conceptual schema design in a high-level data model.

3. The external or view level includes a number of external

schemas or user views. Each external schema describes the

part of the database that a particular user group is interested in

and hides the rest of the database from that user group. As in

the previous level, each external schema is typically

implemented using a representational data model, possibly

based on an external schema design in a high-level conceptual

data model.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Three-Schema Architecture

and Data Independence (cont'd.)



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Schemas, Instances, and 

Database State
 Database schema

 Description of a database

 Schema diagram

 Displays selected aspects of schema

 Schema construct

 Each object in the schema

 Database state or snapshot

 Data in database at a particular moment in time



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Schemas, Instances, and 

Database State (cont'd.)
 Define a new database

 Specify database schema to the DBMS

 Initial state 

 Populated or loaded with the initial data

 Valid state

 Satisfies the structure and constraints specified 

in the schema



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Schemas, Instances, and 

Database State (cont'd.)
 Schema evolution

 Changes applied to schema as application 

requirements change



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Three-Schema Architecture

and Data Independence
 Internal level 

 Describes physical storage structure of the 

database

 Conceptual level

 Describes structure of the whole database for a 

community of users

 External or view level 

 Describes part of the database that a particular 

user group is interested in



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.2.2 Data Independence
The three-schema architecture can be used to further explain the concept of

data independence, which can be defined as the capacity to change the

schema at one level of a database system without having to change the

schema at the next higher level. We can define two types of data

independence: 1. Logical data independence is the capacity to change the

conceptual schema without having to change external schemas or

application programs. We may change the conceptual schema to expand the

database (by adding a record type or data item), to change constraints, or to

reduce the database (by removing a record type or data item). In the last

case, external schemas that refer only to the remaining data should not be

affected. For example, the external schema of Figure 1.5(a) should not be

affected by changing the GRADE_REPORT file (or record type) shown in

Figure 1.2 into the one shown in Figure 1.6(a). Only the view definition and

the mappings need to be changed in a DBMS that supports logical data

independence. After the conceptual schema undergoes a logical

reorganization, application pro�grams that reference the external schema

constructs must work as before. Changes to constraints can be applied to the

conceptual schema without affecting the external schemas or application

programs.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Data Independence

 Capacity to change the schema at one level 

of a database system 

 Without having to change the schema at the 

next higher level

 Types:

 Logical

 Physical



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

DBMS Languages

 Data definition language (DDL)

• Defines both schemas

 Storage definition language (SDL)

• Specifies the internal schema

 View definition language (VDL)

• Specifies user views/mappings to conceptual 

schema

 Data manipulation language (DML)

• Allows retrieval, insertion, deletion, modification



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

DBMS Languages (cont'd.)

 High-level or nonprocedural DML 

• Can be used on its own to specify complex 

database operations concisely

• Set-at-a-time or set-oriented

 Low-level or procedural DML 

• Must be embedded in a general-purpose 

programming language

• Record-at-a-time



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

DBMS Interfaces

 Menu-based interfaces for Web clients or 

browsing

 Forms-based interfaces

 Graphical user interfaces

 Natural language interfaces

 Speech input and output

 Interfaces for parametric users

 Interfaces for the DBA



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.4 The Database System Environment
2.4.1 DBMS Component Modules Figure 2.3 illustrates, in a simplified form,

the typical DBMS components. The figure is divided into two parts. The top

part of the figure refers to the various users of the database environment and

their interfaces. The lower part shows the internal modules of the DBMS

responsible for storage of data and processing of transactions. The database

and the DBMS catalog are usually stored on disk. Access to the disk is

controlled primarily by the operating system (OS), which schedules disk

read/write. Many DBMSs have their own buffer management module to

schedule disk read/write, because management of buffer storage has a

considerable effect on performance. Reducing disk read/write improves

performance considerably. A higher-level stored data manager module of the

DBMS controls access to DBMS information that is stored on disk, whether it

is part of the database or the catalog. Let us consider the top part of Figure

2.3 first. It shows interfaces for the DBA staff, casual users who work with

interactive interfaces to formulate queries, application programmers who

create programs using some host programming languages, and parametric

users who do data entry work by supplying parameters to predefined

transactions. The DBA staff works on defining the database and tuning it by

mak�ing changes to its definition using the DDL and other privileged

commands.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The DDL compiler processes schema definitions, specified in the DDL, and stores

descriptions of the schemas (meta-data) in the DBMS catalog. The catalog

includes information such as the names and sizes of files, names and data types

of data items, storage details of each file, mapping information among schemas,

and constraints. In addition, the catalog stores many other types of information

that are needed by the DBMS modules, which can then look up the catalog

information as needed. Casual users and persons with occasional need for

information from the database interact using the interactive query interface in

Figure 2.3. We have not explicitly shown any menu-based or form-based or

mobile interactions that are typically used to generate the interactive query

automatically or to access canned transactions. These queries are parsed and

validated for correctness of the query syntax, the names of files and data

elements, and so on by a query compiler that compiles them into an internal form.

This internal query is subjected to query optimization (discussed in Chapters 18

and 19). Among other things, the query optimizer is concerned with the

rearrangement and possible reordering of operations, elimination of

redundancies,



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Among other things, the query optimizer is concerned with the

rearrangement and possible reordering of operations, elimination of

redundancies, and use of efficient search algorithms during execution. It

consults the system catalog for statistical and other physical information

about the stored data and generates executable code that performs the

necessary operations for the query and makes calls on the runtime

processor. Application programmers write programs in host languages

such as Java, C, or C++ that are submitted to a precompiler. The

precompiler extracts DML commands from an application program written

in a host programming language. These commands are sent to the DML

compiler for compilation into object code for database access. The rest of

the program is sent to the host language compiler. The object codes for

the DML commands and the rest of the program are linked, forming a

canned transaction whose executable code includes calls to the runtime

database processor. It is also becoming increasingly common to use

scripting languages such as PHP and Python to write database programs.

Canned transactions are executed repeatedly by parametric users via

PCs or mobile apps; these users simply supply the parameters to the

transactions. Each execution is considered to be a separate transaction.

An example is a bank payment transaction where the account number,

payee, and amount may be supplied as parameters.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

In the lower part of Figure 2.3, the runtime database

processor executes (1) the privileged commands, (2) the

executable query plans, and (3) the canned transactions with

runtime parameters. It works with the system catalog and

may update it with statistics. It also works with the stored data

manager, which in turn uses basic operating system services

for carrying out low-level input/output (read/write) operations

between the disk and main memory. The runtime database

processor handles other aspects of data transfer, such as

management of buffers in the main memory. Some DBMSs

have their own buffer management module whereas others

depend on the OS for buffer management. We have shown

concurrency control and backup and recovery systems

separately as a module in this figure. They are integrated into

the working of the runtime database processor for purposes

of transaction management.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.4.2 Database System Utilities In addition to possessing the

software modules just described, most DBMSs have database

utilities that help the DBA manage the database system.

Common utilities have the following types of functions:

■ Loading. A loading utility is used to load existing data

files—such as text files or sequential files—into the database.

Usually, the current (source) format of the data file and the

desired (target) database file structure are specified to the

utility, which then automatically reformats the data and stores

it in the database. With the proliferation of DBMSs,

transferring data from one DBMS to another is becoming

common in many organizations. Some vendors offer

conversion tools that generate the appropriate loading

programs, given the existing source and target database

storage descriptions (internal schemas).



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

■ Backup. A backup utility creates a backup copy of the

database, usually by dumping the entire database onto tape

or other mass storage medium. The backup copy can be

used to restore the database in case of catastrophic disk

failure. Incremental backups are also often used, where only

changes since the previous backup are recorded. Incremental

backup is more complex, but saves storage space.

■ Database storage reorganization. This utility can be used

to reorganize a set of database files into different file

organizations and create new access paths to improve

performance.

■ Performance monitoring. Such a utility monitors database

usage and provides statistics to the DBA. The DBA uses the

statistics in making decisions such as whether or not to

reorganize files or whether to add or drop indexes to improve

performance.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The Database System 

Environment
 DBMS component modules

 Buffer management 

 Stored data manager 

 DDL compiler 

 Interactive query interface

• Query compiler 

• Query optimizer

 Precompiler



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The Database System 

Environment (cont'd.)
 DBMS component modules

 Runtime database processor

 System catalog

 Concurrency control system

 Backup and recovery system



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database System Utilities

 Loading

 Load existing data files

 Backup

 Creates a backup copy of the database



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Database System Utilities 

(cont'd.)
 Database storage reorganization

 Reorganize a set of database files into different 

file organizations

 Performance monitoring

 Monitors database usage and provides 

statistics to the DBA



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Tools, Application Environments, 

and Communications Facilities
 CASE Tools

 Data dictionary (data repository) system

 Stores design decisions, usage standards, 

application program descriptions, and user 

information

 Application development environments

 Communications software



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5 Centralized and Client/Server Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture

Architectures for DBMSs have followed trends similar to those

for general computer system architectures. Older architectures

used mainframe computers to provide the main processing for

all system functions, including user application programs and

user interface programs, as well as all the DBMS functionality.

The reason was that in older systems, most users accessed the

DBMS via computer terminals that did not have processing

power and only provided display capabilities. Therefore, all

processing was performed remotely on the computer system

housing the DBMS, and only display information and controls

were sent from the computer to the display terminals, which

were connected to the central computer via various types of

communications networks.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5.2 Basic Client/Server Architectures

First, we discuss client/server architecture in general; then we

discuss how it is applied to DBMSs. The client/server

architecture was developed to deal with computing

environments in which a large number of PCs, workstations,

file servers, printers, database servers, Web servers, e-mail

servers, and other software and equipment are connected via

a network. The idea is to define specialized servers with

specific functionalities. For example, it is possible to connect

a number of PCs or small workstations as clients to a file

server that maintains the files of the client machines. Another

machine can be designated as a printer server by being

connected to various printers; all print requests by the clients

are forwarded to this machine. Web servers or e-mail servers

also fall into the specialized server category.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The resources provided by specialized servers can be accessed by many

client machines. The client machines provide the user with the appropriate

interfaces to utilize these servers, as well as with local processing power to

run local applications. This concept can be carried over to other software

packages, with specialized programs—such as a CAD (computer-aided

design) package—being stored on specific server machines and being

made accessible to multiple clients.

that client and server software usually run on separate machines. Two main

types of basic DBMS architectures were created on this underlying

client/server framework: two-tier and three-tier. We discuss them next.

2.5.3 Two-Tier Client/Server Architectures

for DBMSs In relational database management systems (RDBMSs), many

of which started as centralized systems, the system components that were

first moved to the client side were the user interface and application

programs. Because SQL (see Chapters 6 and 7) provided a standard

language for RDBMSs, this created a logical dividing point between client

and server. Hence, the query and transac�tion functionality related to SQL

processing remained on the server side. In such an architecture, the server

is often called a query server or transaction server because it provides

these two functionalities. In an RDBMS, the server is also often called an

SQL server.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The user interface programs and application programs can run on the

client side. When DBMS access is required, the program establishes a

connection to the DBMS (which is on the server side); once the

connection is created, the client program can communicate with the

DBMS. A standard called Open Database Connectivity (ODBC) provides

an application programming interface (API), which allows client-side

programs to call the DBMS, as long as both client and server machines

have the necessary software installed. Most DBMS vendors provide

ODBC drivers for their systems. A client program can actually connect to

several RDBMSs and send query and transaction requests using the

ODBC API, which are then processed at the server sites. Any query

results are sent back to the client program, which can process and display

the results as needed. A related standard for the Java programming

language, called JDBC, has also been defined. This allows Java client

programs to access one or more DBMSs through a standard interface.

The architectures described here are called two-tier architectures because

the software components are distributed over two systems: client and

server. The advantages of this architecture are its simplicity and seamless

compatibility with existing systems. The emergence of the Web changed

the roles of clients and servers, leading to the three-tier architecture.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

2.5.4 Three-Tier and n-Tier Architectures

for Web Applications Many Web applications use an architecture called the

three-tier architecture, which adds an intermediate layer between the client

and the database server, as illustrated in Figure 2.7(a). This intermediate

layer or middle tier is called the application server or the Web server,

depending on the application. This server plays an intermediary role by

running application programs and storing business rules (procedures or

constraints) that are used to access data from the database server. It can

also improve database security by checking a client’s credentials before

forwarding a request to the database server. Clients contain user

interfaces and Web browsers. The intermediate server accepts requests

from the client, processes the request and sends database queries and

commands to the database server, and then acts as a conduit for passing

(partially) processed data from the database server to the clients, where it

may be processed further and filtered to be presented to the users. Thus,

the user interface, application rules, and data access act as the three tiers.

Figure 2.7(b) shows another view of the three-tier architecture used by

database and other application package vendors.



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Centralized and Client/Server 

Architectures for DBMSs
 Centralized DBMSs Architecture

 All DBMS functionality, application program 

execution, and user interface processing 

carried out on one machine



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Basic Client/Server Architectures

 Servers with specific functionalities

 File server 

• Maintains the files of the client machines.

 Printer server 

• Connected to various printers; all print requests by 

the clients are forwarded to this machine

 Web servers or e-mail servers



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Basic Client/Server Architectures 

(cont'd.)
 Client machines 

 Provide user with:

• Appropriate interfaces to utilize these servers

• Local processing power to run local applications



Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Basic Client/Server Architectures 

(cont'd.)
 Client 

 User machine that provides user interface 

capabilities and local processing

 Server

 System containing both hardware and software 

 Provides services to the client machines

• Such as file access, printing, archiving, or database 

access



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Two-Tier Client/Server 

Architectures for DBMSs
 Server handles

 Query and transaction functionality related to 

SQL processing 

 Client handles

 User interface programs and application 

programs



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Two-Tier Client/Server 

Architectures (cont'd.)
 Open Database Connectivity (ODBC) 

 Provides application programming interface 

(API)

 Allows client-side programs to call the DBMS

• Both client and server machines must have the 

necessary software installed

 JDBC

 Allows Java client programs to access one or 

more DBMSs through a standard interface



Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Three-Tier and n-Tier 

Architectures for Web 

Applications
 Application server or Web server

 Adds intermediate layer between client and the 

database server

 Runs application programs and stores 

business rules

 N-tier

 Divide the layers between the user and the 

stored data further into finer components



Copyright © 2011 Ramez Elmasri and Shamkant Navathe


